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1 Getting Started

Product Overview

In this section...

“Automated HDL Code Generation in the Hardware Development Process”
on page 1-2

“Summary of Key Features” on page 1-4

Automated HDL Code Generation in the Hardware
Development Process
Simulink® HDL Coder™ software lets you generate hardware description
language (HDL) code based on Simulink® models and Stateflow® finite-state
machines. The coder brings the Model-Based Design approach into the domain
of application-specific integrated circuit (ASIC) and field programmable gate
array (FPGA) development. Using the coder, system architects and designers
can spend more time on fine-tuning algorithms and models through rapid
prototyping and experimentation and less time on HDL coding.

Typically, you use a Simulink model to simulate a design intended for
realization as an ASIC or FPGA. Once satisfied that the model meets design
requirements, you run the Simulink HDL Coder compatibility checker
utility to examine model semantics and blocks for HDL code generation
compatibility. You then invoke the coder, using either the command line or
the graphical user interface. The coder generates VHDL or Verilog code that
implements the design embodied in the model.

Usually, you also generate a corresponding test bench. You can use the
test bench with HDL simulation tools to drive the generated HDL code and
evaluate its behavior. The coder generates scripts that automate the process
of compiling and simulating your code in these tools. You can also use EDA
Simulator Link™, software from MathWorks® to cosimulate generated HDL
entities within a Simulink model.

The test bench feature increases confidence in the correctness of the generated
code and saves time spent on test bench implementation. The design and test
process is fully iterative. At any point, you can return to the original model,
make modifications, and regenerate code.
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When the design and test phase of the project has been completed, you
can easily export the generated HDL code to synthesis and layout tools for
hardware realization. The coder generates synthesis scripts for the Synplify®

family of synthesis tools.

Extending the Code Generation Process
There are a number of ways to extend the code generation process.

You can direct many details of the code generation process by setting code
generation options in the HDL Code Generation pane of the Configuration
Parameters dialog box or the Model Explorer. You can also set code generation
options as parameter/value pairs passed to the makehdl and makehdltb
functions.

You can also specify how code is generated for a selected block or sets of blocks
within the model. The coder provides alternate HDL block implementations
for a variety of blocks. The HDL Block Properties dialog box lets you select
from among implementations optimized for characteristics such as speed,
chip area, or low latency. The HDL Block Properties dialog box also lets
you set implementation parameters that specify further details of the code
generated for a block.

You can also select implementations and apply implementation parameters to
large groups of blocks programmatically. The coder provides utility functions
such as hdlfind_system and hdlset_param for this purpose.

In some cases, block-specific optimizations may introduce latencies (delays)
or numeric computations (for example, saturation or rounding operations) in
the generated code that are not in the original model. To help you evaluate
such cases, the coder creates a generated model — a Simulink model that
corresponds exactly to the generated HDL code. This generated model lets
you run simulations that produce results that are bit-true to the HDL code,
and whose timing is cycle-accurate with respect to the HDL code.

You can interface generated HDL code to existing or legacy HDL code. One
way to do this is to use a subsystem in your model as a placeholder for an HDL
entity, and generate ablack box interface (comprising I/O port definitions
only) to that entity. Another way is to generate a cosimulation interface by
placing an HDL Cosimulation block in your model.
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Summary of Key Features
• Generation of target-independent, synthesizable HDL code from Simulink
models, MATLAB code, and Stateflow charts

• Support for Mealy and Moore finite-state machines and control logic
implementations

• Generation of test benches and EDA Simulator Link cosimulation models

• Resource sharing and subsystem-level retiming options for area-speed
tradeoffs

• Simulink model optimization using timing constraint information and
HDL synthesis tools

• Code-to-model and model-to-code traceability for DO-254

• Legacy code integration
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Expected Users and Prerequisites
Users of this product are system and hardware architects and designers
who develop, optimize, and verify ASICs or FPGAs. These designers are
experienced with VHDL or Verilog but can benefit from automated HDL
code generation.

Users are expected to have prerequisite knowledge in the following areas:

• Hardware design and system integration

• VHDL or Verilog

• MATLAB®

• Simulink

• Simulink® Fixed Point™

• DSP System Toolbox™

• HDL simulators, such as the Mentor Graphics® ModelSim® simulator or
Cadence Incisive® simulator

• Synthesis tools, such as Synplify
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Software Requirements and Installation

In this section...

“Software Requirements” on page 1-6

“Installing the Software” on page 1-7

Software Requirements
The coder requires the following MathWorks software:

• MATLAB

• Simulink

• Simulink Fixed Point

• Fixed-Point Toolbox™

The following related products are recommended for use with the coder:

• Stateflow

• DSP System Toolbox (This software is required for generating HDL code
for the Digital Filter block in certain cases. See “Summary of Block
Implementations” on page 5-3.)

• EDA Simulator Link

• Signal Processing Toolbox™

• DSP System Toolbox

Software Requirements for Demos
To operate some demos shipped with this release, the following related
products are required:

• DSP System Toolbox

• Filter Design HDL Coder™

• EDA Simulator Link
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• Communications System Toolbox™(required to use Viterbi Decoder demo)

• Image Processing Toolbox™ (required to use Image Reconstruction demos)

VHDL and Verilog Language Support
Before installing the coder , make sure that you have compatible compilers
and other tools. Generated code is compatible with HDL compilers, simulators
and other tools that support:

• VHDL versions 93 and 02

• Verilog-2001 (IEEE 1364-2001) or later

Installing the Software
For information on installing the required software listed previously, and
optional software, see the MATLAB installation documentation.

After completing your installation:

• Read “Before You Generate Code” on page 2-2 to learn about recommended
practices for ensuring that your models are compatible with HDL code
generation.

• Work through the examples in Chapter 2, “Introduction to HDL Code
Generation” to acquaint yourself with the operation of the product.
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Available Help and Demos

In this section...

“Online Help” on page 1-8

“Demos” on page 1-8

Online Help
The following online help is available:

• Online help is available in the MATLAB Help browser. Click the Simulink
HDL Coder product link in the browser’s Contents pane.

• To view documentation in PDF format, click the Simulink HDL
Coder > Printable Documentation (PDF) link in the browser’s
Contents pane.

• Command-line help for the functions makehdl, makehdltb, checkhdl,
hdllib, and hdlsetup is available through the doc and help commands.
For example:

help makehdl

Demos
To access models demonstrating aspects of HDL code generation:

1 In the command-line window, type the following command:

demos

The Help window opens.

2 In the Demos pane on the left, select Simulink > Simulink HDL Coder.

3 The right pane displays hyperlinks to the available demos. Click the link to
the desired demo and follow the demo instructions.
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• “Before You Generate Code” on page 2-2
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• “Generating HDL Code Using the Command Line Interface” on page 2-7

• “Generating HDL Code Using the GUI” on page 2-16

• “Simulating and Verifying Generated HDL Code” on page 2-30
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Before You Generate Code
The exercises in this introduction use a preconfigured demo model. All blocks
in this demo model support HDL code generation, and the parameters of the
model itself have been configured properly for HDL code generation.

After you complete the exercises, you will probably proceed to generating
HDL code from your existing models, or newly constructed models. Before
you generate HDL code from your own models, you should do the following to
ensure that your models are HDL code generation compatible:

• Use the hdllib utility to create a library of all blocks that are currently
supported for HDL code generation, as described in “Supported Blocks
Library” on page 10-35. By constructing models with blocks from this
library, you can ensure HDL compatibility for all your models.

The set of supported blocks will change in future releases, so you should
rebuild your supported blocks library each time you install a new version
of this product.

• Use the Run Compatibility Checker option (described in “Selecting
and Checking a Subsystem for HDL Compatibility” on page 2-23) to check
HDL compatibility of your model or DUT and generate an HDL Code
Generation Check Report.

Alternatively, you can invoke the checkhdl function (see checkhdl) to run
the compatibility checker.

• Before generating code, use the hdlsetup utility (described in “Initializing
Model Parameters with hdlsetup” on page 2-8) to set up your model for
HDL code generation quickly and consistently.
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Overview of Exercises
The coder supports HDL code generation in your choice of environments:

• The MATLAB Command Window supports code generation using the
makehdl, makehdltb, and other functions.

• The Simulink GUI (the Configuration Parameters dialog box and/or Model
Explorer) provides an integrated view of the model simulation parameters
and HDL code generation parameters and functions.

The hands-on exercises in this chapter introduce you to the mechanics of
generating and simulating HDL code, using the same model to generate code
in both environments. In a series of steps, you will

• Configure a simple model for code generation.

• Generate VHDL code from a subsystem of the model.

• Generate a VHDL test bench and scripts for the Mentor Graphics ModelSim
simulator to drive a simulation of the model.

• Compile and execute the model and test bench code in the simulator.

• Generate and simulate Verilog code from the same model.

• Check a model for compatibility with the coder.
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The sfir_fixed Demo Model
These exercises use the sfir_fixed demo model as a source model for HDL
code generation. The model simulates a symmetric finite impulse response
(FIR) filter algorithm, implemented with fixed-point arithmetic. The following
figure shows the top level of the model.

This model employs a division of labor that is useful in HDL design:

• The symmetric_fir subsystem, which implements the filter algorithm, is
the device under test (DUT). An HDL entity will be generated, tested, and
eventually synthesized from this subsystem.

• The top-level model components that drive the subsystem work as a test
bench.
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The sfir_fixed Demo Model

The top-level model generates 16-bit fixed-point input signals for the
symmetric_fir subsystem. The Signal From Workspace block generates a
test input (stimulus) signal for the filter. The four Constant blocks provide
filter coefficients.

The Scope blocks are used in simulation only. They are virtual blocks, and do
not generate any HDL code.

The following figure shows the symmetric_fir subsystem.
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Appropriate fixed-point data types propagate throughout the subsystem.
Inputs inherit the data types of the signals presented to them. Where
required, internal rules of the blocks determine the correct output data type,
given the input data types and the operation performed (for example, the
Product blocks).

The filter outputs a fixed-point result at the y_out port, and also replicates its
input (after passing it through several delay stages) at the delayed_x_out
port.

In the exercises that follow, you generate VHDL code that implements the
symmetric_fir subsystem as an entity. You then generate a test bench
from the top-level model. The test bench drives the generated entity, for
the required number of clock steps, with stimulus data generated from the
Signal From Workspace block.
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Generating HDL Code Using the Command Line Interface

In this section...

“Overview” on page 2-7

“Creating a Folder and Local Model File” on page 2-7

“Initializing Model Parameters with hdlsetup” on page 2-8

“Generating a VHDL Entity from a Subsystem” on page 2-10

“Generating VHDL Test Bench Code” on page 2-12

“Verifying Generated Code” on page 2-13

“Generating a Verilog Module and Test Bench” on page 2-14

Overview
This exercise provides a step-by-step introduction to code and test bench
generation commands, their arguments, and the files created by the code
generator. The exercise assumes that you have familiarized yourself with the
demo model (see “The sfir_fixed Demo Model” on page 2-4).

Creating a Folder and Local Model File
Make a local copy of the demo model and store it in a working folder, as
follows.

1 Start the MATLAB software.

2 Create a folder named sl_hdlcoder_work, for example:

mkdir C:\work\sl_hdlcoder_work

The sl_hdlcoder_work folder will store a local copy of the demo model and
to store folders and code generated by the coder. The location of the folder
does not matter, except that it should not be within the MATLAB tree.

3 Make the sl_hdlcoder_work folder your working folder, for example:

cd C:\work\sl_hdlcoder_work
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4 To open the demo model, type the following command at the MATLAB
prompt:

demos

5 The Help window opens. In the Demos pane on the left, click the + for
Simulink. Then click the + for Simulink HDL Coder. Then double-click
the list entry for the Symmetric FIR Filter Demo.

The sfir_fixed model opens.

6 Select Save As from the Simulink File menu and save a local copy of
sfir_fixed.mdl. to your working folder.

7 Leave the sfir_fixed model open and proceed to the next section.

Initializing Model Parameters with hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the hdlsetup command. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently.

To set the model parameters:

1 At the MATLAB command prompt, type

hdlsetup('sfir_fixed')

2 Select Save from the File menu, to save the model with its new settings.

Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures the Solver options that are recommended or required by
the coder. These are

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup.)
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• Solver: Discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the correct one for simulating
discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time) : auto

If Fixed step size is set to auto the step size is chosen automatically, based
on the sample times specified in the model. In the demo model, only the
Signal From Workspace block specifies an explicit sample time (1 s); all other
blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the demo model,
computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup affect error severity levels, data
logging, and model display options. If you want to view the complete set of
model parameters affected by hdlsetup, open hdlsetup.m in the MATLAB
Editor.

The model parameter settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications. For
example, hdlsetup sets a default Simulation stop time of 10 s. A total
simulation time of 1000 s would be more realistic for a test of the sfir_fixed
demo model. If you would like to change the simulation time, enter the
desired value into the Simulation stop time field of the Simulink window.
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See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable model
parameters.

Generating a VHDL Entity from a Subsystem
In this section, you will use the makehdl function to generate code for a VHDL
entity from the symmetric_fir subsystem of the demo model. makehdl also
generates script files for third-party HDL simulation and synthesis tools.

makehdl lets you specify numerous properties that control various features
of the generated code. In this example, you will use defaults for all makehdl
properties.

Before generating code, make sure that you have completed the steps
described in “Creating a Folder and Local Model File” on page 2-7 and
“Initializing Model Parameters with hdlsetup” on page 2-8.

To generate code:

1 Select Current Folder from the Desktop menu in the MATLAB window.
This displays the MATLAB Current Folder browser, which lets you easily
access your working folder and the files that will be generated within it.

2 At the MATLAB prompt, type the command

makehdl('sfir_fixed/symmetric_fir')

This command directs the coder to generate code from the symmetric_fir
subsystem within the sfir_fixed model, using default values for all
properties.

3 As code generation proceeds, the coder displays progress messages. The
process should complete successfully with the message

### HDL Code Generation Complete.

Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB Editor.
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makehdl compiles the model before generating code. Depending on model
display options (such as port data types, etc.), the appearance of the model
may change after code generation.

4 By default, makehdl generates VHDL code. Code files and scripts are
written to a target folder. The default target folder is a subfolder of your
working folder, named hdlsrc.

A folder icon for the hdlsrc folder is now visible in the Current Folder
browser. To view generated code and script files, double-click the hdlsrc
folder icon.

5 The files that makehdl has generated in the hdlsrc folder are

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation
script (vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify synthesis script

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 10-37).

6 To view the generated VHDL code in the MATLAB Editor, double-click the
symmetric_fir.vhd file icon in the Current Folder browser.

At this point it is suggested that you study the ENTITY and ARCHITECTURE
definitions while referring to “HDL Code Generation Defaults” on
page 20-33 in the makehdl reference documentation. The reference
documentation describes the default naming conventions and
correspondences between the elements of a model (subsystems, ports,
signals, etc.) and elements of generated HDL code.

7 Before proceeding to the next section, close any files you have opened in
the editor. Then, click the Go Up One Level button in the Current Folder
browser, to set the current folder back to your sl_hdlcoder_work folder.

8 Leave the sfir_fixed model open and proceed to the next section.
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Generating VHDL Test Bench Code
In this section, you use the test bench generation function, makehdltb, to
generate a VHDL test bench. The test bench is designed to drive and verify
the operation of the symmetric_fir entity that was generated in the previous
section. A generated test bench includes

• Stimulus data generated by signal sources connected to the entity under
test.

• Output data generated by the entity under test. During a test bench run,
this data is compared to the outputs of the VHDL model, for verification
purposes.

• Clock, reset, and clock enable inputs to drive the entity under test.

• A component instantiation of the entity under test.

• Code to drive the entity under test and compare its outputs to the expected
data.

In addition, makehdltb generates Mentor Graphics ModelSim scripts to
compile and execute the test bench.

This exercise assumes that your working folder is the same as that used in
the previous section. This folder now contains an hdlsrc folder containing the
previously generated code.

To generate a test bench:

1 At the MATLAB prompt, type the command

makehdltb('sfir_fixed/symmetric_fir')

This command generates a test bench that is designed to interface to and
validate code generated from symmetric_fir (or from a subsystem with a
functionally identical interface). By default, VHDL test bench code, as well
as scripts, are generated in the hdlsrc target folder.

2 As test bench generation proceeds, the coder displays progress messages.
The process should complete successfully with the message

### HDL TestBench Generation Complete.
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3 To view generated test bench and script files, double-click the hdlsrc
folder icon in the Current Folder browser. Alternatively, you can click the
hyperlinked names of generated files in the code test bench generation
progress messages.

The files generated by makehdltb are:

• symmetric_fir_tb.vhd: VHDL test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim
compilation script (vcom commands). This script compiles and loads both
the entity to be tested (symmetric_fir.vhd) and the test bench code
(symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to
initialize the simulator, set up wave window signal displays, and run a
simulation.

4 If you want to view the generated test bench code in the MATLAB Editor,
double-click the symmetric_fir.vhd file icon in the Current Folder
browser. You may want to study the code while referring to the makehdltb
reference documentation, which describes the default actions of the test
bench generator.

5 Before proceeding to the next section, close any files you have opened in
the editor. Then, click the Go Up One Level button in the Current Folder
browser, to set the current folder back to your sl_hdlcoder_work folder.

Verifying Generated Code
You can now take the previously generated code and test bench to an HDL
simulator for simulated execution and verification of results. See “Simulating
and Verifying Generated HDL Code” on page 2-30 for an example of how to
use generated test bench and script files with the Mentor Graphics ModelSim
simulator.
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Generating a Verilog Module and Test Bench
The procedures for generating Verilog code differ only slightly from those for
generating VHDL code. This section provides an overview of the command
syntax and the generated files.

Generating a Verilog Module
By default, makehdl generates VHDL code. To override the default and
generate Verilog code, you must pass in a property/value pair to makehdl,
setting the TargetLanguage property to 'verilog', as in this example.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The previous command generates Verilog source code, as well as scripts for
the simulation and the synthesis tools, in the default target folder, hdlsrc.

The files generated by this example command are:

• symmetric_fir.v: Verilog code. This file contains a Verilog module
implementing the symmetric_fir subsystem.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation
script (vlog command) to compile the generated Verilog code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.

• symmetric_fir_map.txt.: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 10-37).

Generating and Executing a Verilog Test Bench
The makehdltb syntax for overriding the target language is exactly the same
as that for makehdl. The following example generates Verilog test bench code
to drive the Verilog module, symmetric_fir, in the default target folder.

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The files generated by this example command are
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• symmetric_fir_tb.v: Verilog test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim compilation
script (vlog commands). This script compiles and loads both the entity to be
tested (symmetric_fir.v) and the test bench code (symmetric_fir_tb.v).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to initialize
the simulator, set up wave window signal displays, and run a simulation.

The following listing shows the commands and responses from a test bench
session using the generated scripts:

ModelSim>vlib work

ModelSim> do symmetric_fir_tb_compile.do

# Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

# -- Compiling module symmetric_fir

#

# Top level modules:

# symmetric_fir

# Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

# -- Compiling module symmetric_fir_tb

#

# Top level modules:

# symmetric_fir_tb

ModelSim>do symmetric_fir_tb_sim.do

# vsim work.symmetric_fir_tb

# Loading work.symmetric_fir_tb

# Loading work.symmetric_fir

# **** Test Complete. ****

# Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

# Simulation Breakpoint:Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

# MACRO ./symmetric_fir_tb_sim.do PAUSED at line 14
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Generating HDL Code Using the GUI

In this section...

“Simulink® HDL Coder GUI Overview” on page 2-16

“Creating a Folder and Local Model File” on page 2-19

“Viewing Coder Options in the Configuration Parameters Dialog Box” on
page 2-20

“Initializing Model Parameters with hdlsetup” on page 2-22

“Selecting and Checking a Subsystem for HDL Compatibility” on page 2-23

“Generating VHDL Code” on page 2-24

“Generating VHDL Test Bench Code” on page 2-27

“Verifying Generated Code” on page 2-29

“Generating Verilog Model and Test Bench Code” on page 2-29

Simulink HDL Coder GUI Overview
You can view and edit options and parameters that affect HDL code generation
in the Configuration Parameters dialog box, or in the Model Explorer.

The following figure shows the top-level HDL Code Generation pane in the
Configuration Parameters dialog box.
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The following figure shows the top-level HDL Code Generation options
pane as displayed in the Model Explorer.
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If you are not familiar with Simulink configuration sets, or how to view and
edit them in the Configuration Parameters dialog box, see the following
documentation:

• “Setting Up Configuration Sets”

• “Configuration Parameters Dialog Box”
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If you are not familiar with the Model Explorer, see “Exploring, Searching,
and Browsing Models”.

In the hands-on code generation exercises that follow, you use the
Configuration Parameters dialog box to view and set the coder options and
controls. The exercises use the sfir_fixed demo model (see “The sfir_fixed
Demo Model” on page 2-4) in basic code generation and verification steps.

Creating a Folder and Local Model File
In this section you will setup the folder and a local copy of the demo model.

Creating a Folder
Start by setting up a working folder:

1 Start MATLAB.

2 Create a folder named sl_hdlcoder_work, for example:

mkdir C:\work\sl_hdlcoder_work

You will use sl_hdlcoder_work to store a local copy of the demo model
and to store folders and code generated by the coder. The location of the
folder does not matter, except that it should not be within the MATLAB
folder tree.

3 Make the sl_hdlcoder_work folder your working folder, for example:

cd C:\work\sl_hdlcoder_work

Making a Local Copy of the Model File
Next, make a copy of the sfir_fixed model:

1 To open the model, type the following command at the MATLAB prompt:

sfir_fixed

2 Save a local copy of sfir_fixed.mdl to your working folder.
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3 Leave the sfir_fixed model open and proceed to the next section.

Viewing Coder Options in the Configuration
Parameters Dialog Box
The coder option settings are displayed as a category of the model’s active
configuration set. You can view and edit these options in the Configuration
Parameters dialog box, or in the Model Explorer. This discussion uses the
Configuration Parameters dialog box.

To access the coder settings:

1 Open the Configuration Parameters dialog box.

2 Select the HDL Code Generation pane.
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The HDL Code Generation pane contains top-level options and buttons
that control the HDL code generation process. Several other categories
of options are available under the HDL Code Generation entry in the
Select tree. This exercise uses a small subset of these options, leaving
the others at their default settings.

Chapter 3, “Code Generation Options in the Simulink® HDL Coder Dialog
Boxes” summarizes all the options available in theHDL Code Generation
category.
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Initializing Model Parameters with hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the hdlsetup command. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently.

To set the model parameters:

1 At the MATLAB command prompt, type:

hdlsetup('sfir_fixed')

2 Save the model with its new settings.

Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures Solver options that are recommended or required by
the coder. These options are:

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup.)

• Solver: Discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the correct one for simulating
discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time): auto
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If Fixed step size is set to auto the step size is chosen automatically, based
on the sample times specified in the model. In the demo model, only the
Signal From Workspace block specifies an explicit sample time (1 s); all other
blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the demo model,
computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup affect error severity levels, data
logging, and model display options. If you want to view the complete set of
model parameters affected by hdlsetup, open hdlsetup.m in the MATLAB
Editor.

The model parameter settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications. For
example, hdlsetup sets a default Simulation stop time of 10 s. A total
simulation time of 1000 s would be more realistic for a test of the sfir_fixed
demo model. If you would like to change the simulation time, enter the
desired value into the Simulation stop time field of the Simulink Editor.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable model
parameters.

Selecting and Checking a Subsystem for HDL
Compatibility
The coder generates code from either the current model or from a subsystem at
the root level of the current model. You use the Generate HDL for menu to
select the model or subsystem from which code is to be generated. Each entry
in the menu shows the full path to the model or one of its subcomponents.

The sfir_fixed model is configured with the sfir_fixed/symmetric_fir
subsystem selected for code generation. If this is not the case, make sure that
the symmetric_fir subsystem is selected for code generation, as follows:
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1 Select sfir_fixed/symmetric_fir from the Generate HDL for menu.

2 Click Apply.

To check HDL compatibility for the subsystem:

1 Click the Run Compatibility Checker button.

2 The HDL compatibility checker examines the system selected in the
Generate HDL for menu for any compatibility problems. In this case, the
selected subsystem is fully HDL-compatible, and the compatibility checker
displays the following message:

### Starting HDL Check.
### HDL Check Complete with 0 errors, warnings and messages.

3 The compatibility checker also displays an HTML report in a Web browser,
as shown in the following figure.

Generating VHDL Code
The top-level HDL Code Generation options are now set as follows:

• The Generate HDL for field specifies the sfir_fixed/symmetric_fir
subsystem for code generation.

• The Language field specifies (by default) generation of VHDL code.

• The Folder field specifies a target folder that stores generated code files
and scripts. The default target folder is a subfolder of your working folder,
named hdlsrc.
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Before generating code, select Current Folder from the Desktop menu in
the MATLAB window. This displays the Current Folder browser, which lets
you access your working folder and the files that will be generated within it.

To generate code:

1 Click the Generate button.

2 As code generation proceeds, the coder displays progress messages. The
process should complete successfully with the message

### HDL Code Generation Complete.
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Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB Editor.

The coder compiles the model before generating code. Depending on model
display options (such as port data types, etc.), the appearance of the model
may change after code generation.

3 A folder icon for the hdlsrc folder is now visible in the Current Folder
browser. To view generated code and script files, double-click the hdlsrc
folder icon.

4 The files that were generated in the hdlsrc folder are:

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation
script (vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 10-37).

5 To view the generated VHDL code in the MATLAB Editor, double-click the
symmetric_fir.vhd file icon in the Current Folder browser.

At this point it is suggested that you study the ENTITY and ARCHITECTURE
definitions while referring to “HDL Code Generation Defaults” on
page 20-33 in the makehdl reference documentation. The reference
documentation describes the default naming conventions and
correspondences between the elements of a model (subsystems, ports,
signals, etc.) and elements of generated HDL code.

6 Before proceeding to the next section, close any files you have opened in
the editor. Then, click the Go Up One Level button in the Current Folder
browser, to set the current folder back to your sl_hdlcoder_work folder.
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Generating VHDL Test Bench Code
At this point, the Generate HDL for, Language, and Folder fields are
set as they were in the previous section. Accordingly, you can now generate
VHDL test bench code to drive the VHDL code generated previously for the
sfir_fixed/symmetric_fir subsystem. The code will be written to the same
target folder as before.

To generate a VHDL test bench:

1 Select the HDL Code Generation > Test Bench pane.
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2 Select HDL test bench.

3 Click the Generate Test Bench button.

4 As test bench generation proceeds, the coder displays progress messages.
The process should complete successfully with the message

### HDL TestBench Generation Complete.
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5 The generated files in the hdlsrc folder are:

• symmetric_fir_tb.vhd: VHDL test bench code, with generated test
and output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim
compilation script (vcom commands). This script compiles and loads
the entity to be tested (symmetric_fir.vhd) and the test bench code
(symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to
initialize the simulator, set up wave window signal displays, and run a
simulation.

Verifying Generated Code
You can now take the generated code and test bench to an HDL simulator for
simulated execution and verification of results. See “Simulating and Verifying
Generated HDL Code” on page 2-30 for an example of how to use generated
test bench and script files with the Mentor Graphics ModelSim simulator.

Generating Verilog Model and Test Bench Code
The procedure for generating Verilog code is the same as for generating VHDL
code (see “Generating a VHDL Entity from a Subsystem” on page 2-10 and
“Generating VHDL Test Bench Code” on page 2-12), except that you select
Verilog from the Language field of the HDL Code Generation options.
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Simulating and Verifying Generated HDL Code

Note This section requires the use of the Mentor Graphics ModelSim
simulator.

This section assumes that you have generated code from the sfir_fixed
model as described in either of the following exercises:

• “Generating HDL Code Using the Command Line Interface” on page 2-7

• “Generating HDL Code Using the GUI” on page 2-16

In this section you compile and run a simulation of the previous generated
model and test bench code. The scripts generated by the coder let you do this
with just a few simple commands. The procedure is the same, whether you
generated code in the command line environment or in the GUI.

To run the simulation:

1 Start the Mentor Graphics ModelSim software.

2 Set the working folder to the folder in which you previously generated code.

ModelSim>cd C:/work/sl_hdlcoder_work/hdlsrc

3 Use the generated compilation script to compile and load the generated
model and text bench code. The following listing shows the command
and responses.

ModelSim>do symmetric_fir_tb_compile.do

# Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

# -- Loading package standard

# -- Loading package std_logic_1164

# -- Loading package numeric_std

# -- Compiling entity symmetric_fir

# -- Compiling architecture rtl of symmetric_fir

# Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

# -- Loading package standard

# -- Loading package std_logic_1164
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# -- Loading package numeric_std

# -- Compiling package symmetric_fir_tb_pkg

# -- Compiling package body symmetric_fir_tb_pkg

# -- Loading package symmetric_fir_tb_pkg

# -- Loading package symmetric_fir_tb_pkg

# -- Compiling entity symmetric_fir_tb

# -- Compiling architecture rtl of symmetric_fir_tb

# -- Loading entity symmetric_fir

4 Use the generated simulation script to execute the simulation. The
following listing shows the command and responses. The warning messages
are benign.

ModelSim>do symmetric_fir_tb_sim.do

# vsim work.symmetric_fir_tb

# Loading C:\Applications\ModelTech_6_0\win32/../std.standard

# Loading C:\Applications\ModelTech_6_0\win32/../ieee.std_logic_1164(body)

# Loading C:\Applications\ModelTech_6_0\win32/../ieee.numeric_std(body)

# Loading work.symmetric_fir_tb_pkg(body)

# Loading work.symmetric_fir_tb(rtl)

# Loading work.symmetric_fir(rtl)

# ** Warning: NUMERIC_STD."<": metavalue detected, returning FALSE

# Time: 0 ns Iteration: 0 Instance: /symmetric_fir_tb

.

.

.

# ** Warning: NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

# Time: 0 ns Iteration: 1 Instance: /symmetric_fir_tb

# ** Note: **************TEST COMPLETED **************

# Time: 140 ns Iteration: 1 Instance: /symmetric_fir_tb

The test bench termination message indicates that the simulation has run
to completion successfully, without any comparison errors.

# ** Note: **************TEST COMPLETED **************

5 The simulation script displays all inputs and outputs in the model
(including the reference signals y_out_ref and delayed_x_out_ref) in the
Mentor Graphics ModelSim wave window. The following figure shows the
signals displayed in the wave window.
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6 Exit the Mentor Graphics ModelSim simulator when you finish viewing
signals.

7 Close any files you have opened in the MATLAB Editor. Then, click the Go
Up One Level button in the Current Folder browser, to set the current
folder back to your work folder.
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Viewing and Setting HDL Code Generation Options

In this section...

“HDL Code Generation Options in the Configuration Parameters Dialog
Box” on page 3-2

“HDL Code Generation Options in the Model Explorer” on page 3-4

“HDL Code Generation Tools Menu” on page 3-6

“HDL Code Generation Options in the Block Context Menu” on page 3-6

“The HDL Block Properties Dialog Box” on page 3-8

HDL Code Generation Options in the Configuration
Parameters Dialog Box
The following figure shows the top-level HDL Code Generation pane in
the Configuration Parameters dialog box. To open this dialog box, select
Simulation > Configuration Parameters in the Simulink window. Then
select HDL Code Generation from the list on the left.
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If you are not familiar with Simulink configuration sets and how to view and
edit them in the Configuration Parameters dialog box, see the “Setting Up
Configuration Sets” and “Configuration Parameters Dialog Box” sections of
the Simulink documentation.

Note When the HDL Code Generation pane of the Configuration
Parameters dialog box appears, clicking the Help button displays general
help for the Configuration Parameters dialog box.
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HDL Code Generation Options in the Model Explorer
The following figure shows the top-level HDL Code Generation pane as
displayed in the Dialog pane of the Model Explorer.

To view this dialog box:

1 Open the Model Explorer.

2 Select your model’s active configuration set in the Model Hierarchy tree
on the left.

3 Select HDL Code Generation from the list in the Contents pane.
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When the HDL Code Generation pane is selected in the Model Explorer,
clicking the Help button displays the documentation specific to the current
tab.

If you are not familiar with the Model Explorer, see “Exploring, Searching,
and Browsing Models”.
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HDL Code Generation Tools Menu
The HDL Code Generation submenu of the Tools menu provides shortcuts
to the HDL code generation options. You can also use this menu to initiate
code generation.

Options include:

• HDL Workflow Advisor: Open the HDL Workflow Advisor. SeeChapter
15, “Using the HDL Workflow Advisor” for more information.

• Options: Open the HDL Code Generation pane in the Configuration
Parameters dialog box.

• Generate HDL: Initiate HDL code generation; equivalent to theGenerate
button in the Configuration Parameters dialog box or Model Explorer.

• Generate Test Bench: Initiate test bench code generation; equivalent to
the Generate Test Bench button in the Configuration Parameters dialog
box or Model Explorer. If you do not select a subsystem from the top (root)
level of the current model in the Generate HDL for menu, the Generate
Test Bench menu option is disabled.

• Add HDL Coder Configuration to Model or Remove HDL Coder
Configuration from Model: The HDL configuration component is
an internal data structure that the coder creates and attaches to a
model. This component lets you view the HDL Code Generation pane
in the Configurations Parameters dialog box, and use the HDL Code
Generation pane to set HDL code generation options. In certain
circumstances, you might need to add or remove the HDL Code Generation
configuration component to or from a model. Use this option to add or
remove the component. See “Adding and Removing the HDL Configuration
Component” on page 10-40 for more information.

HDL Code Generation Options in the Block Context
Menu
When you right-click any block that the coder supports, the context menu for
the block includes an HDL Code Generation submenu. The coder enables
items in the submenu according to:

• The block type: for subsystems, the menu enables some options that are
specific to subsystems.
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• Whether or not code and traceability information has been generated for
the block or subsystem.

The following summary describes the HDL Code Generation submenu
options.

Option Description Availability

Check
Subsystem
Compatibility

Runs the HDL
compatibility checker
(checkhdl) on the
subsystem.

Available only for
subsystems.

Generate HDL
for Subsystem

Runs the HDL code
generator (makehdl) and
generates code for the
subsystem.

Available only for
subsystems.

HDL Coder
Properties

Opens the Configuration
Parameters dialog box,
with the top-level HDL
Code Generation pane
selected.

Available for blocks or
subsystems.

HDL Block
Properties

Opens a block properties
dialog box for the block or
subsystem. See “The HDL
Block Properties Dialog
Box” on page 3-8 for more
information.

Available for blocks or
subsystems.

HDL Workflow
Advisor

Opens the HDL Workflow
Advisor for the subsystem.
See Chapter 15, “Using the
HDL Workflow Advisor”
for more information.

Available only for
subsystems.

Navigate to
Code

Activates the HTML code
generation report window,
displaying the beginning
of the code generated
for the selected block or
subsystem. See “Tracing

Enabled when both code
and a traceability report
have been generated for
the block or subsystem.
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Option Description Availability

from Model to Code”
on page 10-18 for more
information.

The HDL Block Properties Dialog Box
The coder provides selectable alternate block implementations for many block
types. Each implementation is optimized for different characteristics, such
as speed or chip area. The HDL Properties dialog box lets you choose the
implementation for a selected block.

Most block implementations support a number of implementation parameters
that let you control further details of code generation for the block. The HDL
Properties dialog box lets you set implementation parameters for a block.

The following figure shows the HDL Properties dialog box for a block.

There are a number of ways to specify implementations and implementation
parameters for individual blocks or groups of blocks. See Chapter
4, “Specifying Block Implementations and Parameters for HDL Code
Generation” for detailed information.
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HDL Code Generation Pane: General

In this section...

“HDL Code Generation Top-Level Pane Overview” on page 3-11

“Generate HDL for” on page 3-13

“Language” on page 3-14

“Folder” on page 3-15

“Code Generation Output” on page 3-16
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In this section...

“Generate traceability report” on page 3-17

“Include requirements in block comments” on page 3-18

“Generate optimization report” on page 3-19

“Generate resource utilization report” on page 3-20
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HDL Code Generation Top-Level Pane Overview
The top-level HDL Code Generation pane contains buttons that initiate
code generation and compatibility checking, and sets parameters that affect
overall operation of code generation.

Buttons in the HDL Code Generation Top-Level Pane
The buttons in the HDL Code Generation pane perform functions related to
code generation. These buttons are:

Generate: Initiates code generation for the system selected in the
Generate HDL for menu. See also makehdl.
Run Compatibility Checker: Invokes the compatibility checker to
examine the system selected in the Generate HDL for menu for any
compatibility problems. See also checkhdl.
Browse: Lets you navigate to and select the target folder to which
generated code and script files are written. The path to the target folder is
entered into the Folder field.
Restore Factory Defaults: sets all model parameters to their default
values; also (if the model has a control file linked to it) unlinks the control
file from the model.
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Generate HDL for
Select the subsystem or model from which code is generated. The list includes
the path to the root model and to all root-level subsystems in the model.

Settings
Default: The root model is selected.

Command-Line Information
Pass in the path to the model or subsystem for which code is to be generated
as the first argument to makehdl.

See Also
makehdl
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Language
Select the language (VHDL or Verilog) in which code is generated. The
selected language is referred to as the target language.

Settings
Default: VHDL

VHDL
Generate VHDL code.

Verilog
Generate Verilog code.

Command-Line Information

Property: TargetLanguage
Type: string
Value: 'VHDL' | 'Verilog'
Default: 'VHDL'

See Also

• TargetLanguage

• makehdl

3-14



HDL Code Generation Pane: General

Folder
Enter a path to the folder into which code is generated. Alternatively, click
Browse to navigate to and select a folder. The selected folder is referred
to as the target folder.

Settings
Default: The default target folder is a subfolder of your working folder,
named hdlsrc.

Command-Line Information

Property: TargetDirectory
Type: string
Value: A valid path to your target folder
Default: 'hdlsrc'

See Also

• TargetDirectory

• makehdl
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Code Generation Output
This option button group contains options related to the creation and display
of generated models. Click the desired button to select an option.

Settings
Default: Generate HDL code

• Generate HDL code: Generate HDL code without displaying the
generated model.

• Display generated model only: Display the generated model without
generating HDL code.

• Generate HDL Code and display generated model: Display the
generated model after HDL code generation completes.

Command-Line Information

Property: CodeGenerationOutput
Type: string
Value: 'GenerateHDLCode' |
'GenerateHDLCodeAndDisplayGeneratedModel' |
'DisplayGeneratedModelOnly'
Default: 'GenerateHDLCode'

See Also
Defaults and Options for Generated Models
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Generate traceability report
Enable or disable generation of an HTML code generation report with
hyperlinks from code to model and model to code.

Settings
Default: Off

On
Create and display an HTML code generation report. See Creating and
Using a Code Generation Report.

Off
Do not create an HTML code generation report.

Command-Line Information

Property: Traceability
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Traceability
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Include requirements in block comments
Enable or disable generation of requirements comments as comments in code
or code generation reports

Settings
Default: On

On
If the model contains requirements comments, include them as
comments in code or code generation reports.See “Requirements
Comments and Hyperlinks” on page 10-28.

Off
Do not include requirements as comments in code or code generation
reports.

Command-Line Information

Property: RequirementComments
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
RequirementComments
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Generate optimization report
Enable or disable generation of an HTML optimization report

Settings
Default: Off

On
Create and display an HTML optimization report. The report contains
information about the results of streaming, sharing, and distributed
pipelining optimizations that were implemented in the generated code.
The report includes hyperlinks back to referenced blocks, subsystems,
or validation models.See Creating and Using a Code Generation
Report.

Off
Do not create an HTML optimization report.

Command-Line Information

Property: OptimizationReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
OptimizationReport
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Generate resource utilization report
Enable or disable generation of an HTML resource utilization report

Settings
Default: Off

On
Create and display an HTML resource utilization report. The report
contains information about the number of hardware resources
(multipliers, adders, registers) used in the generated HDL code. The
report includes hyperlinks to the referenced blocks in the model.. See
Creating and Using a Code Generation Report.

Off
Do not create an HTML resource utilization report.

Command-Line Information

Property: ResourceReport
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
ResourceReport
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HDL Code Generation Pane: Global Settings

In this section...

“Global Settings Overview” on page 3-24

“Reset type” on page 3-25

“Reset asserted level” on page 3-26

“Clock input port” on page 3-27

“Clock enable input port” on page 3-28

“Reset input port” on page 3-29
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In this section...

“Clock inputs” on page 3-30

“Oversampling factor” on page 3-31

“Comment in header” on page 3-32

“Verilog file extension” on page 3-33

“VHDL file extension” on page 3-34

“Entity conflict postfix” on page 3-35

“Package postfix” on page 3-36

“Reserved word postfix” on page 3-37

“Split entity and architecture” on page 3-38

“Split entity file postfix” on page 3-40

“Split arch file postfix” on page 3-41

“Clocked process postfix” on page 3-42

“Enable prefix” on page 3-43

“Pipeline postfix” on page 3-44

“Complex real part postfix” on page 3-45

“Complex imaginary part postfix” on page 3-46

“Input data type” on page 3-47

“Output data type” on page 3-48

“Clock enable output port” on page 3-50

“Balance Delays” on page 3-51

“Scalarize Vector Ports” on page 3-52

“Represent constant values by aggregates” on page 3-53

“Use "rising_edge" for registers” on page 3-54

“Loop unrolling” on page 3-55

“Cast before sum” on page 3-56

“Use Verilog `timescale directives” on page 3-57
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In this section...

“Inline VHDL configuration” on page 3-58

“Concatenate type safe zeros” on page 3-59

“Emit time/date stamp in header” on page 3-60

“Optimize timing controller” on page 3-62

“Minimize clock enables” on page 3-64

“Minimize intermediate signals” on page 3-66
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Global Settings Overview
The Global Settings pane lets you set options to specify detailed
characteristics of the generated code, such as HDL element naming and
whether certain optimizations are applied.
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Reset type
Specify whether to use asynchronous or synchronous reset logic when
generating HDL code for registers.

Settings
Default: Asynchronous

Asynchronous
Use asynchronous reset logic.

Synchronous
Use synchronous reset logic.

Command-Line Information

Property: ResetType
Type: string
Value: 'async' | 'sync'
Default: 'async'

See Also
ResetType
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Reset asserted level
Specify whether the asserted (active) level of reset input signal is active-high
or active-low.

Settings
Default: Active-high

Active-high
Asserted (active) level of reset input signal is active-high (1).

Active-low
Asserted (active) level of reset input signal is active-low (0).

Command-Line Information

Property: ResetAssertedLevel
Type: string
Value: 'active-high' | 'active-low'
Default: 'active-high'

See Also
ResetAssertedLevel
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Clock input port
Specify the name for the clock input port in generated HDL code.

Settings
Default: clk

Enter a string value to be used as the clock signal name in generated HDL
code. If you specify a string that is a VHDL or Verilog reserved word, the code
generator appends a reserved word postfix string to form a valid VHDL or
Verilog identifier. For example, if you specify the reserved word signal, the
resulting name string would be signal_rsvd.

Command-Line Information

Property: ClockInputPort
Type: string
Value: Any identifier that is legal in the target language
Default: 'clk'

See Also
ClockInputPort
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Clock enable input port
Specify the name for the clock enable input port in generated HDL code.

Settings
Default: clk_enable

Enter a string value to be used as the clock enable input port name in
generated HDL code. If you specify a string that is a VHDL or Verilog
reserved word, the code generator appends a reserved word postfix string
to form a valid VHDL or Verilog identifier. For example, if you specify the
reserved word signal, the resulting name string would be signal_rsvd.

Tip
The clock enable input signal is asserted active-high (1). Thus, the input
value must be high for the generated entity’s registers to be updated.

Command-Line Information

Property: ClockEnableInputPort
Type: string
Value: Any identifier that is legal in the target language
Default: 'clk_enable'

See Also
ClockEnableInputPort
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Reset input port
Enter the name for the reset input port in generated HDL code.

Settings
Default: reset

Enter a string value to be used as the reset input port name in generated
HDL code. If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid VHDL
or Verilog identifier. For example, if you specify the reserved word signal,
the resulting name string would be signal_rsvd.

Tip
If the reset asserted level is set to active-high, the reset input signal is
asserted active-high (1) and the input value must be high (1) for the entity’s
registers to be reset. If the reset asserted level is set to active-low, the reset
input signal is asserted active-low (0) and the input value must be low (0)
for the entity’s registers to be reset.

Command-Line Information

Property: ResetInputPort
Type: string
Value: Any identifier that is legal in the target language
Default: 'reset'

See Also
ResetInputPort
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Clock inputs
Specify generation of single or multiple clock inputs.

Settings
Default: Single

Single
Generates a single clock input for the DUT. If the DUT is multirate,
the input clock is the master clock rate, and a timing controller is
synthesized to generate any additional clocks as necessary.

Multiple
Generates a unique clock for each Simulink rate in the DUT. The
number of timing controllers generated depends on the contents of the
DUT.

Command-Line Information

Property: ClockInputs
Type: string
Value: 'Single' | 'Multiple'
Default: 'Single'

See Also
ClockInputs
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Oversampling factor
Specify frequency of global oversampling clock as a multiple of the model’s
base rate.

Settings
Default: 1

Oversampling factor specifies the oversampling factor of a global
oversampling clock. The oversampling factor expresses the desired rate of the
global oversampling clock as a multiple of your model’s base rate.

When you specify the Oversampling factor for a global oversampling clock,
note these requirements:

• The oversampling factor must be an integer greater than or equal to 1.

• The default value is 1. In the default case, the coder does not generate a
global oversampling clock is generated.

• In a multirate DUT, all other rates in the DUT must divide evenly into
the global oversampling rate.

Command-Line Information

Property: Oversampling
Type: int
Value: integer greater than or equal to 1
Default: 1

See Also

Generating a Global Oversampling Clock
Oversampling
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Comment in header
Specify comment lines in header of generated HDL and test bench files.

Settings
Default: None

Text entered in this field generates a comment line in the header of generated
model and test bench files. The code generator adds leading comment
characters as appropriate for the target language. When newlines or linefeeds
are included in the string, the code generator emits single-line comments
for each newline.

Command-Line Information

Property: UserComment
Type: string

See Also
UserComment
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Verilog file extension
Specify the file-name extension for generated Verilog files.

Settings
Default: .v

This field specifies the file-name extension for generated Verilog files.

Dependencies
This option is enabled when the target language (specified by the Language
option) is Verilog.

Command-Line Information

Property: VerilogFileExtension
Type: string
Default: '.v'

See Also
VerilogFileExtension
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VHDL file extension
Specify the file-name extension for generated VHDL files.

Settings
Default: .vhd

This field specifies the file-name extension for generated VHDL files.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: VHDLFileExtension
Type: string
Default: '.vhd'

See Also
VHDLFileExtension
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Entity conflict postfix
Specify the string used to resolve duplicate VHDL entity or Verilog module
names in generated code.

Settings
Default: _block

The specified postfix resolves duplicate VHDL entity or Verilog module
names. For example, in the default case, if the coder detects two entities with
the name MyFilt, the coder names the first entity MyFilt and the second
instance MyFilt_entity.

Command-Line Information

Property: EntityConflictPostfix
Type: string
Value: Any string that is legal in the target language
Default: '_block'

See Also
EntityConflictPostfix
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Package postfix
Specify a string to append to the model or subsystem name to form name
of a package file.

Settings
Default: _pkg

The coder applies this option only if a package file is required for the design.

Dependency
This option is enabled when:

The target language (specified by the Language option) is VHDL.

The target language (specified by the Language option) is Verilog, and the
Multi-file test bench option is selected.

Command-Line Information

Property: PackagePostfix
Type: string
Value: Any string value that is legal in a VHDL package file name
Default: '_pkg'

See Also
PackagePostfix
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Reserved word postfix
Specify a string to append to value names, postfix values, or labels that are
VHDL or Verilog reserved words.

Settings
Default: _rsvd

The reserved word postfix is applied to identifiers (for entities, signals,
constants, or other model elements) that conflict with VHDL or Verilog
reserved words. For example, if your generating model contains a signal
named mod, the coder adds the postfix _rsvd to form the name mod_rsvd.

Command-Line Information

Property: ReservedWordPostfix
Type: string
Default: '_rsvd'

See Also
ReservedWordPostfix
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Split entity and architecture
Specify whether generated VHDL entity and architecture code is written to a
single VHDL file or to separate files.

Settings
Default: Off

On
VHDL entity and architecture definitions are written to separate files.

Off
VHDL entity and architecture code is written to a single VHDL file.

Tips
The names of the entity and architecture files derive from the base file name
(as specified by the generating model or subsystem name). By default, postfix
strings identifying the file as an entity (_entity) or architecture (_arch) are
appended to the base file name. You can override the default and specify
your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd, you can
specify that the code reside in MyFIR_entity.vhd and MyFIR_arch.vhd.

Dependencies
This option is enabled when the target language (specified by the Language
option) is Verilog.

Selecting this option enables the following parameters:

• Split entity file postfix

• Split architecture file postfix

Command-Line Information

Property: SplitEntityArch
Type: string
Value: 'on' | 'off'
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Default: 'off'

See Also
SplitEntityArch
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Split entity file postfix
Enter a string to be appended to the model name to form the name of a
generated VHDL entity file.

Settings
Default: _entity

Dependencies
This parameter is enabled by Split entity and architecture.

Command-Line Information

Property: SplitEntityFilePostfix
Type: string
Default: '_entity'

See Also
SplitEntityFilePostfix
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Split arch file postfix
Enter a string to be appended to the model name to form the name of a
generated VHDL architecture file.

Settings
Default: _arch

Dependencies
This parameter is enabled by Split entity and architecture.

Command-Line Information

Property: SplitArchFilePostfix
Type: string
Default: '_arch'

See Also
SplitArchFilePostfix
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Clocked process postfix
Specify a string to append to HDL clock process names.

Settings
Default: _process

The coder uses process blocks for register operations. The label for each of
these blocks is derived from a register name and the postfix _process. For
example, the coder derives the label delay_pipeline_process from the
register name delay_pipeline and the default postfix string _process.

Command-Line Information

Property: ClockProcessPostfix
Type: string
Default: '_process'

See Also
ClockProcessPostfix
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Enable prefix
Specify the base name string for internal clock enables and other flow control
signals in generated code.

Settings
Default: 'enb'

Where only a single clock enable is generated, Enable prefix specifies the
signal name for the internal clock enable signal.

In some cases, multiple clock enables are generated (for example, when a
cascade block implementation for certain blocks is specified). In such cases,
Enable prefix specifies a base signal name for the first clock enable that
is generated. For other clock enable signals, numeric tags are appended to
Enable prefix to form unique signal names. For example, the following code
fragment illustrates two clock enables that were generated when Enable
prefix was set to 'test_clk_enable':

COMPONENT mysys_tc
PORT( clk : IN std_logic;

reset : IN std_logic;
clk_enable : IN std_logic;
test_clk_enable : OUT std_logic;
test_clk_enable_5_1_0 : OUT std_logic
);

END COMPONENT;

Command-Line Information

Property: EnablePrefix
Type: string
Default: 'enb'

See Also
EnablePrefix
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Pipeline postfix
Specify string to append to names of input or output pipeline registers
generated for pipelined block implementations.

Settings
Default: '_pipe'

You can specify a generation of input and/or output pipeline registers for
selected blocks. The Pipeline postfix option defines a string that the coder
appends to names of input or output pipeline registers.

Command-Line Information

Property: PipelinePostfix
Type: string
Default: '_pipe'

See Also
PipelinePostfix
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Complex real part postfix
Specify string to append to real part of complex signal names.

Settings
Default: '_re'

Enter a string to be appended to the names generated for the real part of
complex signals.

Command-Line Information

Property: ComplexRealPostfix
Type: string
Default: '_re'

See Also
ComplexRealPostfix
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Complex imaginary part postfix
Specify string to append to imaginary part of complex signal names.

Settings
Default: '_im'

Enter a string to be appended to the names generated for the imaginary part
of complex signals.

Command-Line Information

Property: ComplexImagPostfix
Type: string
Default: '_im'

See Also
ComplexImagPostfix
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Input data type
Specify the HDL data type for the model’s input ports.

Settings
For VHDL, the options are:

Default: std_logic_vector

std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore,
Input data type is disabled when the target language is Verilog.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: InputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: (for VHDL) 'std_logic_vector'
(for Verilog) 'wire'

See Also
InputType
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Output data type
Specify the HDL data type for the model’s output ports.

Settings
For VHDL, the options are:

Default: Same as input data type

Same as input data type
Specifies that output ports have the same type specified by Input data
type.

std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED.

For Verilog, the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore,
Output data type is disabled when the target language is Verilog.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: OutputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: If the property is left unspecified, output ports have the same
type specified by InputType.
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See Also
OutputType
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Clock enable output port
Specify the name for the generated clock enable output.

Settings
Default: ce_out

A clock enable output is generated when the design requires one.

Command-Line Information

Property: ClockEnableOutputPort
Type: string
Default: 'ce_out'

See Also
ClockEnableOutputPort
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Balance Delays
Enable delay balancing.

Settings
Default: Off

On
If the coder detects introduction of new delays along one path, it ensures
that matching delays are inserted on all other paths. When delay
balancing is enabled, the coder guarantees that the generated model is
functionally equivalent to the original model.

Off
The coder does not guarantee that the latency along all signal paths
is balanced, and does not guarantee that the generated model is
functionally equivalent to the original model

Command-Line Information

Property: BalanceDelays
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
Delay Balancing
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Scalarize Vector Ports
Flatten vector ports into a structure of scalar ports in VHDL code

Settings
Default: Off

On
When generating code for a vector port, generate a structure of scalar
ports .

Off
When generating code for a vector port, generate a type definition and
port declaration for the vector port.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: ScalarizePorts
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
ScalarizePorts
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Represent constant values by aggregates
Specify whether all constants in VHDL code are represented by aggregates,
including constants that are less than 32 bits.

Settings
Default: Off

On
The coder represents all constants as aggregates. The following VHDL
constant declarations show a scalar less than 32 bits represented as an
aggregate:

GainFactor_gainparam <= (14 => '1', OTHERS => '0');

Off
The coder represents constants less than 32 bits as scalars and
constants greater than or equal to 32 bits as aggregates. The following
VHDL code was generated by default for a value less than 32 bits:

GainFactor_gainparam <= to_signed(16384, 16);

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: UseAggregatesForConst
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
UseAggregatesForConst
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Use "rising_edge" for registers
Specify whether or not generated code uses the VHDL rising_edge function
to check for rising edges when operating on registers.

Settings
Default: Off

On
Generated code uses the VHDL rising_edge function to check for rising
edges when operating on registers.

Off
Generated code checks for clock events when operating on registers.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: UseRisingEdge
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
UseRisingEdge
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Loop unrolling
Specify whether VHDL FOR and GENERATE loops are unrolled and omitted
from generated VHDL code.

Settings
Default: Off

On
Unroll and omit FOR and GENERATE loops from the generated VHDL
code. (In Verilog code, loops are always unrolled.)

Off
Include FOR and GENERATE loops in the generated VHDL code.

Tips
If you are using an electronic design automation (EDA) tool that does not
support GENERATE loops, select this option to omit loops from your generated
VHDL code.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: LoopUnrolling
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
LoopUnrolling
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Cast before sum
Specify whether operands in addition and subtraction operations are type cast
to the result type before executing the operation.

Settings
Default: On

On
Typecast input values in addition and subtraction operations to the
result type before operating on the values.

Off
Preserve the types of input values during addition and subtraction
operations and then convert the result to the result type.

Command-Line Information

Property: CastBeforeSum
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
CastBeforeSum
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Use Verilog `timescale directives
Specify use of compiler `timescale directives in generated Verilog code.

Settings
Default: On

On
Use compiler `timescale directives in generated Verilog code.

Off
Suppress the use of compiler `timescale directives in generated Verilog
code.

Tip
The `timescale directive provides a way of specifying different delay values
for multiple modules in a Verilog file. This setting does not affect the
generated test bench.

Dependencies
This option is enabled when the target language (specified by the Language
option) is Verilog.

Command-Line Information

Property: UseVerilogTimescale
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
UseVerilogTimescale
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Inline VHDL configuration
Specify whether generated VHDL code includes inline configurations.

Settings
Default: On

On
Include VHDL configurations in any file that instantiates a component.

Off
Suppress the generation of configurations and require user-supplied
external configurations. Use this setting if you are creating your own
VHDL configuration files.

Tip
HDL configurations can be either inline with the rest of the VHDL code for
an entity or external in separate VHDL source files. By default, the coder
includes configurations for a model within the generated VHDL code. If you
are creating your own VHDL configuration files, suppress the generation of
inline configurations.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: InlineConfigurations
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
InlineConfigurations
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Concatenate type safe zeros
Specify use of syntax for concatenated zeros in generated VHDL code.

Settings
Default: On

On
Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically,
this syntax is preferred.

Off
Use the syntax "000000..." for concatenated zeros. This syntax can be
easier to read and more compact, but it can lead to ambiguous types.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: SafeZeroConcat
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
SafeZeroConcat
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Emit time/date stamp in header
Specify whether or not to include time/date information in the generated
HDL file header.

Settings
Default: On

On
Include time/date information in the generated HDL file header.

-- ----------------------------------------------------
--
-- File Name: hdlsrc\symmetric_fir.vhd
-- Created: 2011-02-14 07:21:36
--
-- Generated by MATLAB 7.12 and Simulink HDL Coder 2.1

Off
Omit time/date information in the generated HDL file header.

-- ----------------------------------------------------
--
-- File Name: hdlsrc\symmetric_fir.vhd
--
-- Generated by MATLAB 7.12 and Simulink HDL Coder 2.1

By omitting the time/date information in the file header, you can more
easily determine if two HDL files contain identical code. You can also
avoid extraneous revisions of the same file when checking in HDL files
to a source code management (SCM) system.

Command-Line Information

Property: DateComment
Type: string
Value: 'on' | 'off'
Default: 'on'
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See Also
DateComment
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Optimize timing controller
Optimize timing controller entity for speed and code size by implementing
separate counters per rate.

Settings
Default: On

On
The coder generates multiple counters (one counter for each rate in the
model) in the timing controller code. The benefit of this optimization
is that it generates faster logic, and the size of the generated code is
usually much smaller.

Off
The coder generates a timing controller that uses one counter to
generate all rates in the model.

Tip
A timing controller code file is generated if required by the design, for example:

• When code is generated for a multirate model

• When a cascade block implementation for certain blocks is specified

This file contains a module defining timing signals (clock, reset, external clock
enable inputs and clock enable output) in a separate entity or module. In a
multirate model, the timing controller entity generates the required rates from
a single master clock using one or more counters and multiple clock enables.

The timing controller name derives from the name of the subsystem that is
selected for code generation (the DUT), and the current value of the string
property TimingControllerPostfix. For example, if the name of your DUT
is my_test, in the default case the coder adds the TimingControllerPostfix
_tc to form the timing controller name my_test_tc.

Command-Line Information

Property: OptimizeTimingController
Type: string
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Value: 'on' | 'off'
Default: 'on'

See Also
OptimizeTimingController
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Minimize clock enables
Omit generation of clock enable logic for single-rate designs.

Settings
Default: Off

On
For single-rate models, omit generation of clock enable logic wherever
possible. The following VHDL code example does not define or examine
a clock enable signal. When the clock signal (clk) goes high, the current
signal value is output.

Unit_Delay_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
Unit_Delay_out1 <= to_signed(0, 32);

ELSIF clk'EVENT AND clk = '1' THEN
Unit_Delay_out1 <= In1_signed;

END IF;
END PROCESS Unit_Delay_process;

Off
Generate clock enable logic. The following VHDL code extract
represents a register with a clock enable (enb)

Unit_Delay_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
Unit_Delay_out1 <= to_signed(0, 32);

ELSIF clk'EVENT AND clk = '1' THEN
IF enb = '1' THEN

Unit_Delay_out1 <= In1_signed;
END IF;

END IF;
END PROCESS Unit_Delay_process;
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Exceptions
In some cases, the coder emits clock enables even when Minimize clock
enables is selected. These cases are:

• Registers inside Enabled, State-Enabled, and Triggered subsystems.

• Multi-rate models.

• The coder always emits clock enables for the following blocks:

- commseqgen2/PN Sequence Generator

- dspsigops/NCO

- dspsrcs4/Sine Wave

- hdldemolib/HDL FFT

- built-in/DiscreteFir

- dspmlti4/CIC Decimation

- dspmlti4/CIC Interpolation

- dspmlti4/FIR Decimation

- dspmlti4/FIR Interpolation

- dspadpt3/LMS Filter

- dsparch4/Biquad Filter

- dsparch4/Digital Filter

Command-Line Information

Property: MinimizeClockEnables
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
MinimizeClockEnables
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Minimize intermediate signals
Specify whether to optimize HDL code for debuggability or code coverage.

Settings
Default: Off

On
Optimize for code coverage by minimizing intermediate signals. For
example, suppose that the generated code with this setting off is:

const3 <= to_signed(24, 7);

subtractor_sub_cast <= resize(const3, 8);

subtractor_sub_cast_1 <= resize(delayout, 8);

subtractor_sub_temp <= subtractor_sub_cast - subtractor_sub_cast_1;

With this setting on, the output code is optimized to:

subtractor_sub_temp <= 24 - (resize(delayout, 8));

The intermediate signals const3, subtractor_sub_cast, and
subtractor_sub_cast_1 are removed.

Off
Optimize for debuggability by preserving intermediate signals.

Command-Line Information

Property: MinimizeIntermediateSignals
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
MinimizeIntermediateSignals

3-66



HDL Code Generation Pane: Test Bench

HDL Code Generation Pane: Test Bench

In this section...

“Test Bench Overview” on page 3-69

“HDL test bench” on page 3-70

“Cosimulation blocks” on page 3-71
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In this section...

“Cosimulation model for use with:” on page 3-73

“Test bench name postfix” on page 3-74

“Force clock” on page 3-75

“Clock high time (ns)” on page 3-76

“Clock low time (ns)” on page 3-77

“Hold time (ns)” on page 3-78

“Setup time (ns)” on page 3-79

“Force clock enable” on page 3-80

“Clock enable delay (in clock cycles)” on page 3-81

“Force reset” on page 3-83

“Reset length (in clock cycles)” on page 3-84

“Hold input data between samples” on page 3-86

“Initialize test bench inputs” on page 3-87

“Multi-file test bench” on page 3-88

“Test bench reference postfix” on page 3-90

“Test bench data file name postfix” on page 3-91

“Ignore output data checking (number of samples)” on page 3-92
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Test Bench Overview
The Test Bench pane lets you set options that determine characteristics of
generated test bench code.

Generate Test Bench Button
The Generate Test Bench button initiates test bench generation for the
system selected in the Generate HDL for menu. See also makehdltb.
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HDL test bench
Enable generation of an HDL test bench.

Settings
Default: On

On
Generate HDL test bench code.

Off
Suppress generation of HDL test bench code.

Dependencies
This check box enables all options in the Configuration section of the Test
Bench pane.

Command-Line Information
To generate test bench code from the command line, use themakehdltb
function.

See Also
Generating VHDL Test Bench Code
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Cosimulation blocks
Generate a model containing HDL Cosimulation block(s) for use in testing
the DUT.

Settings
Default: Off

On
When you select this option, the coder generates and opens a model that
contains one or more HDL Cosimulation blocks. The coder generates
cosimulation blocks if your installation includes one or more of the
following:

• EDA Simulator Link for use with Mentor Graphics® ModelSim®

• EDA Simulator Link for use with Cadence Incisive

• EDA Simulator Link for use with Synopsys® Discovery™

Note Support for Synopsys Discovery will be removed in a future
release. The Discovery HDL Cosimulation block is supported in
R2011a for backward compatibility only.

The coder configures the generated HDL Cosimulation blocks to
conform to the port and data type interface of the DUT selected for code
generation. By connecting an HDL Cosimulation block to your model
in place of the DUT, you can cosimulate your design with the desired
simulator.

Off
Do not generate HDL Cosimulation blocks.

Dependencies
This check box enables all other options in the Configuration section of
the Test Bench pane.
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Command-Line Information

Property: GenerateCoSimBlock
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
GenerateCoSimBlock
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Cosimulation model for use with:
Generate model containing HDL Cosimulation block for cosimulation

Settings
Default: Off

On
Selecting this option enables the dropdown menu to the right of the
check box. Select one of the following options from the menu:

• Mentor Graphics ModelSim: This option is the default. If your
installation includes EDA Simulator Link for use with Mentor
Graphics ModelSim, the coder generates and opens a Simulink
model that contains an HDL Cosimulation block forMentor Graphics
ModelSim.

• Cadence Incisive: If your installation includes EDA Simulator
Link for use with Cadence Incisive, the coder generates and opens a
Simulink model that contains an HDL Cosimulation block forCadence
Incisive.

Off
Do not generate HDL Cosimulation model.

Command-Line Information

Property: GenerateCosimModel
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
GenerateCoSimModel
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Test bench name postfix
Specify a suffix appended to the test bench name.

Settings
Default: _tb

For example, if the name of your DUT is my_test, the coder adds the default
postfix _tb to form the name my_test_tb.

Command-Line Information

Property: TestBenchPostFix
Type: string
Default: '_tb'

See Also
TestBenchPostFix
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Force clock
Specify whether the test bench forces clock input signals.

Settings
Default: On

On
The test bench forces the clock input signals. When this option is
selected, the clock high and low time settings control the clock waveform.

Off
A user-defined external source forces the clock input signals.

Dependencies
This property enables the Clock high time and Clock high time options.

Command-Line Information

Property: ForceClock
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceClock
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Clock high time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock
input signals high (1).

Settings
Default: 5

The Clock high time and Clock low time properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a square
wave (50% duty cycle) with a period of 10 ns.

Dependencies
This parameter is enabled when Force clock is selected.

Command-Line Information

Property: ClockHighTime
Type: integer or double (with a maximum of 6 significant digits after the
decimal point)
Default: 5

See Also
ClockHighTime
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Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock
input signals low (0).

Settings
Default: 5

The Clock high time and Clock low time properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a square
wave (50% duty cycle) with a period of 10 ns.

Dependencies
This parameter is enabled when Force clock is selected.

Command-Line Information

Property: ClockLowTime
Type: integer or double (with a maximum of 6 significant digits after the
decimal point)
Default: 5

See Also
ClockLowTime
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Hold time (ns)
Specify a hold time, in nanoseconds, for input signals and forced reset input
signals.

Settings
Default: 2 (given the default clock period of 10 ns)

The hold time defines the number of nanoseconds that reset input signals and
input data are held past the clock rising edge. The hold time is expressed as
a positive integer or double (with a maximum of 6 significant digits after
the decimal point).

Tips

• The specified hold time must be less than the clock period (specified by the
Clock high time and Clock low time properties).

• This option applies to reset input signals only if Force reset is selected.

Command-Line Information

Property: HoldTime
Type: integer or double (with a maximum of 6 significant digits after the
decimal point)
Value: A positive integer
Default: 2

See Also
HoldTime
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Setup time (ns)
Display setup time for data input signals.

Settings
Default: None

This is a display-only field, showing a value computed as (clock period -
HoldTime) in nanoseconds.

Dependency
The value displayed in this field depends on the clock rate and the values
of the Hold time property.

Command-Line Information
Because this is a display-only field, there is no corresponding command-line
property.

See Also
HoldTime
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Force clock enable
Specify whether the test bench forces clock enable input signals.

Settings
Default: On

On
The test bench forces the clock enable input signals to active-high (1) or
active-low (0), depending on the setting of the clock enable input value.

Off
A user-defined external source forces the clock enable input signals.

Dependencies
This property enables the Clock enable delay (in clock cycles) option.

Command-Line Information

Property: ForceClockEnable
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceClockEnable
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Clock enable delay (in clock cycles)
Define elapsed time (in clock cycles) between deassertion of reset and
assertion of clock enable.

Settings
Default: 1

The Clock enable delay (in clock cycles) property defines the number of
clock cycles elapsed between the time the reset signal is deasserted and the
time the clock enable signal is first asserted. In the figure below, the reset
signal (active-high) deasserts after 2 clock cycles and the clock enable asserts
after a clock enable delay of 1 cycle (the default).

Dependency
This parameter is enabled when Force clock enable is selected.

Command-Line Information

Property: TestBenchClockEnableDelay
Type: integer
Default: 1
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See Also
TestBenchClockEnableDelay
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Force reset
Specify whether the test bench forces reset input signals.

Settings
Default: On

On
The test bench forces the reset input signals.

Off
A user-defined external source forces the reset input signals.

Tips
If you select this option, you can use the Hold time option to control the
timing of a reset.

Command-Line Information

Property: ForceReset
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceReset
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Reset length (in clock cycles)
Define length of time (in clock cycles) during which reset is asserted.

Settings
Default: 2

The Reset length (in clock cycles) property defines the number of clock
cycles during which reset is asserted. Reset length (in clock cycles) must
be an integer greater than or equal to 0. The following figure illustrates the
default case, in which the reset signal (active-high) is asserted for 2 clock
cycles.

Dependency
This parameter is enabled when Force reset is selected.

Command-Line Information

Property: Resetlength
Type: integer
Default: 2
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See Also
ResetLength
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Hold input data between samples
Specify how long subrate signal values are held in valid state.

Settings
Default: On

On
Data values for subrate signals are held in a valid state across N
base-rate clock cycles, where N is the number of base-rate clock cycles
that elapse per subrate sample period. (N is >= 2.)

Off
Data values for subrate signals are held in a valid state for only one
base-rate clock cycle. For the subsequent base-rate cycles, data is in an
unknown state (expressed as 'X') until leading edge of the next subrate
sample period.

Tip
In most cases, the default (On) is the correct setting for Hold input data
between samples. This setting matches the behavior of a Simulink
simulation, in which subrate signals are always held valid through each
base-rate clock period.

In some cases (for example modeling memory or memory interfaces), it is
desirable to clear Hold input data between samples. In this way you can
obtain diagnostic information about when data is in an invalid ('X') state.

Command-Line Information

Property: HoldInputDataBetweenSamples
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
HoldInputDataBetweenSamples
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Initialize test bench inputs
Specify initial value driven on test bench inputs before data is asserted to
DUT.

Settings
Default: Off

On
Initial value driven on test bench inputs is'0'.

Off
Initial value driven on test bench inputs is 'X' (unknown).

Command-Line Information

Property: InitializeTestBenchInputs
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
InitializeTestBenchInputs
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Multi-file test bench
Divide generated test bench into helper functions, data, and HDL test bench
code files.

Settings
Default: Off

On
Write separate files for test bench code, helper functions, and test bench
data. The file names are derived from the name of the DUT, the Test
bench name postfix property, and the Test bench data file name
postfix property as follows:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target
language is VHDL, the default test bench file names are:

• symmetric_fir_tb.vhd: test bench code

• symmetric_fir_tb_pkg.vhd: helper functions package

• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog,
the default test bench file names are:

• symmetric_fir_tb.v: test bench code

• symmetric_fir_tb_pkg.v: helper functions package

• symmetric_fir_tb_data.v: test bench data

Off
Write a single test bench file containing all HDL test bench code and
helper functions and test bench data.

Dependency
When this property is selected, Test bench data file name postfix is
enabled.
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Command-Line Information

Property: MultifileTestBench
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
MultifileTestBench
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Test bench reference postfix
Specify a string appended to names of reference signals generated in test
bench code.

Settings
Default: '_ref'

Reference signal data is represented as arrays in the generated test bench
code. The string specified by Test bench reference postfix is appended to
the generated signal names.

Command-Line Information

Parameter: TestBenchReferencePostFix
Type: string
Default: '_ref'

See Also
TestBenchReferencePostFix
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Test bench data file name postfix
Specify suffix added to test bench data file name when generating multi-file
test bench.

Settings
Default:'_data'

The coder applies the Test bench data file name postfix string only
when generating a multi-file test bench (i.e., when Multi-file test bench
is selected).

For example, if the name of your DUT is my_test, and Test bench name
postfix has the default value _tb, the coder adds the postfix _data to form
the test bench data file name my_test_tb_data.

Dependency
This parameter is enabled by Multi-file test bench.

Command-Line Information

Property: TestBenchDataPostFix
Type: string
Default: '_data'

See Also
TestBenchDataPostFix
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Ignore output data checking (number of samples)
Specify number of samples during which output data checking is suppressed.

Settings
Default: 0

The value must be a positive integer.

When the value N of Ignore output data checking (number of samples)
is greater than zero, the test bench suppresses output data checking for the
first N output samples after the clock enable output (ce_out) is asserted.

When using pipelined block implementations, output data may be in an
invalid state for some number of samples. To avoid spurious test bench errors,
determine this number and set Ignore output data checking (number of
samples) accordingly.

Be careful to specify N correctly as a number of samples, not as a number of
clock cycles. For a single-rate model, these are equivalent, but they are not
equivalent for a multirate model.

You should use Ignore output data checking (number of samples) in
cases where there is any state (register) initial condition in the HDL code that
does not match the Simulink state, including the following specific cases:

• When you specify the 'DistributedPipelining','on' parameter for the
MATLAB Function block (see “Distributed Pipeline Insertion for MATLAB
Function Blocks” on page 13-53)

• When you specify the {'ResetType','None'} parameter for any of the
following block types:

- commcnvintrlv2/Convolutional Deinterleaver

- commcnvintrlv2/Convolutional Interleaver

- commcnvintrlv2/General Multiplexed Deinterleaver

- commcnvintrlv2/General Multiplexed Interleaver

- dspsigops/Delay
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- simulink/Additional Math & Discrete/Additional Discrete/Unit Delay
Enabled

- simulink/Commonly Used Blocks/Unit Delay

- simulink/Discrete/Integer Delay

- simulink/Discrete/Memory

- simulink/Discrete/Tapped Delay

- simulink/User-Defined Functions/MATLAB Function

- sflib/Chart

- sflib/Truth Table

• When generating a black box interface to existing manually written HDL
code

Command-Line Information

Property: IgnoreDataChecking
Type: integer
Default: 0

See Also
IgnoreDataChecking
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HDL Code Generation Pane: EDA Tool Scripts

In this section...

“EDA Tool Scripts Overview” on page 3-96

“Generate EDA scripts” on page 3-97

“Generate multicycle path information” on page 3-98

“Compile file postfix” on page 3-99

“Compile Initialization” on page 3-100

“Compile command for VHDL” on page 3-101
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In this section...

“Compile command for Verilog” on page 3-102

“Compile termination” on page 3-103

“Simulation file postfix” on page 3-104

“Simulation initialization” on page 3-105

“Simulation command” on page 3-106

“Simulation waveform viewing command” on page 3-107

“Simulation termination” on page 3-108

“Choose synthesis tool” on page 3-109

“Synthesis file postfix” on page 3-111

“Synthesis initialization” on page 3-112

“Synthesis command” on page 3-113

“Synthesis termination” on page 3-114
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EDA Tool Scripts Overview
The EDA Tool Scripts pane lets you set all options that control generation of
script files for third-party HDL simulation and synthesis tools.
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Generate EDA scripts
Enable generation of script files for third-party electronic design automation
(EDA) tools. These scripts let you compile and simulate generated HDL code
and/or synthesize generated HDL code.

Settings
Default: On

On
Generation of script files is enabled.

Off
Generation of script files is disabled.

Command-Line Information

Parameter: EDAScriptGeneration
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• EDAScriptGeneration

3-97



3 Code Generation Options in the Simulink® HDL Coder™ Dialog Boxes

Generate multicycle path information
Generate a file that reports multicycle path constraint information.

Settings
Default: Off

On
Generate a text file that reports multicycle path constraint information,
for use with synthesis tools.

Off
Do not generate a multicycle path information file.

Command-Line Information

Parameter: MulticyclePathInfo
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also

• Generating a Multicycle Path Information File

• MulticyclePathInfo
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Compile file postfix
Specify a postfix string appended to the DUT or test bench name to form the
compilation script file name.

Settings
Default: _compile.do

For example, if the name of the device under test or test bench is
my_design, the coder adds the postfix _compile.do to form the name
my_design_compile.do.

Command-Line Information

Property: HDLCompileFilePostfix
Type: string
Default: '_compile.do'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLCompileFilePostfix
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Compile Initialization
Specify a format string passed to fprintf to write the Init section of the
compilation script.

Settings
Default: vlib %s\n

The Init phase of the script performs any required setup actions, such as
creating a design library or a project file.

The argument %s is the contents of the 'VHDLLibraryName' property, which
defaults to'work'. You can override the default Init string ('vlib work\n'
by changing the value of 'VHDLLibraryName'.

Command-Line Information

Property: HDLCompileInit
Type: string
Default: 'vlib %s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLCompileInit
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Compile command for VHDL
Specify a format string passed to fprintf to write the Cmd section of the
compilation script for VHDL files.

Settings
Default: vcom %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per
generated HDL file or once per signal. On each call, a different file or signal
name is passed in.

The two arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags to '' (the default).

Command-Line Information

Property: HDLCompileVHDLCmd
Type: string
Default: 'vcom %s %s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLCompileVHDLCmd
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Compile command for Verilog
Specify a format string passed to fprintf to write the Cmd section of the
compilation script for Verilog files.

Settings
Default: vlog %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per
generated HDL file or once per signal. On each call, a different file or signal
name is passed in.

The two arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags property to '' (the default).

Command-Line Information

Property: HDLCompileVerilogCmd
Type: string
Default: 'vlog %s %s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLCompileVerilogCmd
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Compile termination
Specify a format string passed to fprintf to write the termination portion of
the compilation script.

Settings
Default: empty string

The termination phase (Term) is the final execution phase of the script. One
application of this phase is to execute a simulation of HDL code that was
compiled in the Cmd phase. The Term phase takes no arguments.

Command-Line Information

Property: HDLCompileTerm
Type: string
Default: ''

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLCompileTerm
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Simulation file postfix
Specify a postfix string appended to the DUT or test bench name to form the
simulation script file name.

Settings
Default: _sim.do

For example, if the name of the device under test or test bench is my_design,
the coder adds the postfix _sim.do to form the name my_design_sim.do.

Command-Line Information

Property: HDLSimFilePostfix
Type: string
Default: '_sim.do'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSimFilePostfix
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Simulation initialization
Specify a format string passed to fprintf to write the initialization section of
the simulation script.

Settings
Default: The default string is

['onbreak resume\nonerror resume\n']

The Init phase of the script performs any required setup actions, such as
creating a design library or a project file.

Command-Line Information

Property: HDLSimInit
Type: string
Default: ['onbreak resume\nonerror resume\n']

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSimInit

3-105



3 Code Generation Options in the Simulink® HDL Coder™ Dialog Boxes

Simulation command
Specify a format string passed to fprintf to write the simulation command.

Settings
Default: vsim -novopt work.%s\n

The implicit argument is the top-level module or entity name.

Command-Line Information

Property: HDLSimCmd
Type: string
Default: 'vsim -novopt work.%s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane.

• HDLSimCmd
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Simulation waveform viewing command
Specify the waveform viewing command written to simulation script.

Settings
Default: add wave sim:%s\n

The implicit argument is the top-level module or entity name.

Command-Line Information

Property: HDLSimViewWaveCmd
Type: string
Default: 'add wave sim:%s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSimViewWaveCmd
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Simulation termination
Specify a format string passed to fprintf to write the termination portion of
the simulation script.

Settings
Default: run -all\n

The termination phase (Term) is the final execution phase of the script. One
application of this phase is to execute a simulation of HDL code that was
compiled in the Cmd phase. The Term phase takes no arguments.

Command-Line Information

Property: HDLSimTerm
Type: string
Default: 'run -all\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSimTerm
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Choose synthesis tool
Enable or disable generation of synthesis scripts, and select the synthesis tool
for which the coder generates scripts.

Settings
Default: None

None
When you select None, the coder does not generate a synthesis script.
The coder clears and disables all fields in the Synthesis script pane.

Altera Quartus II
Generate a synthesis script for Altera Quartus II. When you select this
option, the coder:

• Enables all fields in the Synthesis script pane.

• Sets Synthesis file postfix to _quartus.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.

Mentor Graphics Precision
Generate a synthesis script for Mentor Graphics Precision. When you
select this option, the coder:

• Enables all fields in the Synthesis script pane.

• Sets Synthesis file postfix to _precision.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.

Synopsys Synplify Pro
Generate a synthesis script for Synopsys Synplify Pro. When you select
this option, the coder:

• Enables all fields in the Synthesis script pane.

• Sets Synthesis file postfix to _synplify.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.
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Xilinx ISE
Generate a synthesis script for Xilinx ISE. When you select this option,
the coder:

• Enables all fields in the Synthesis script pane.

• Sets Synthesis file postfix to _ise.tcl

• Fills in the Synthesis initialization, Synthesis command and
Synthesis termination fields with TCL script code for the tool.

Command-Line Information

Property: SynthToolOption
Type: string
Value: 'none' | 'ISE' | 'Precision' | 'Quartus' | 'Synplify'
Default: 'none'

See Also
SynthToolOption
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Synthesis file postfix
Specify a postfix string appended to file name for generated synthesis scripts.

Settings
Default: None.

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the postfix for generated synthesis file names to one of the
following:

_ise.tcl
_precision.tcl
_quartus.tcl
_synplify.tcl

For example, if the DUT name is my_designand the choice of synthesis tool
is Synopsys Synplify Pro, the coder adds the postfix _synplify.tcl to form
the name my_design_synplify.tcl.

Command-Line Information

Property: HDLSynthFilePostfix
Type: string
Default: none

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSynthFilePostfix
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Synthesis initialization
Specify a format string passed to fprintf to write the initialization section of
the synthesis script.

Settings
Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the Synthesis initialization string. The default string is a
format string passed to fprintf to write the Init section of the synthesis
script. The default string is a synthesis project creation command. The
implicit argument is the top-level module or entity name. The content of the
string is specific to the selected synthesis tool.

Command-Line Information

Property: HDLSynthInit
Type: string
Default: none

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSynthInit
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Synthesis command
Specify a format string passed to fprintf to write the synthesis command.

Settings
Default: none.

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the Synthesis command string. The default string is a format
string passed to fprintf to write the Cmd section of the synthesis script. The
argument is the filename of the entity or module. The content of the string is
specific to the selected synthesis tool.

Command-Line Information

Property: HDLSynthCmd
Type: string
Default: none

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSynthCmd
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Synthesis termination
Specify a format string passed to fprintf to write the termination portion of
the synthesis script.

Settings
Default: none

Your choice of synthesis tool (from the Choose synthesis tool pulldown
menu) sets the Synthesis termination string. The default string is a format
string passed to fprintf to write the Term section of the synthesis script. The
termination string does not take any arguments. The content of the string is
specific to the selected synthesis tool.

Command-Line Information

Property: HDLSynthTerm
Type: string
Default: none

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Pane

• HDLSynthTerm
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Overview of Block Implementations and Implementation
Parameters

Block implementation methods are code generator components that emit HDL
code for the blocks in a model. This document refers to block implementation
methods as block implementations or simply implementations.

The coder provides at least one block implementation for every supported
block. This is called the default implementation. In addition, the coder
provides alternate block implementations for certain block types. Each
implementation is optimized for different characteristics, such as speed or
chip area. For example, you can choose Gain block implementations that
reduce area by using canonic signed digit (CSD) techniques, or use a default
implementation that retains multipliers.

For many block implementations, you can set implementation parameters that
provide a further level of control over how code is generated for a particular
implementation. For example, most blocks support the 'InputPipeline' and
'OutputPipeline' implementation parameters. These parameters let you
specify the generation of input or output pipeline stages for selected blocks by
passing in the required pipeline depth as the parameter value. “Summary
of Block Implementations” on page 5-3 provides a complete summary of all
supported blocks and their implementations and implementation parameters.

The coder supports tasks related to setting and viewing block implementations
and implementation parameters in the GUI and in command-line utilities, as
summarized in the following table.

To... Using the GUI... Using Command Line Tools...

Select an
implementation
for an individual
block

See “Selecting Block Implementations
and Setting Implementation
Parameters with the HDL Block
Properties Dialog Box” on page 4-9

See “Selecting Block
Implementations with
hdlset_param” on page 4-16

Set
implementation
parameters for
an individual
block

See “Selecting Block Implementations
and Setting Implementation
Parameters with the HDL Block
Properties Dialog Box” on page 4-9

See “Selecting Block
Implementations with
hdlset_param” on page 4-16

4-2



Overview of Block Implementations and Implementation Parameters

To... Using the GUI... Using Command Line Tools...

Select an
implementation
for multiple
blocks

N/A See “Selecting Implementations
and Setting Implementation
Parameters for Multiple Blocks” on
page 4-20

Set
implementation
parameters for
multiple blocks

N/A See “Selecting Implementations
and Setting Implementation
Parameters for Multiple Blocks” on
page 4-20

Obtain current
HDL-related
settings for a
block

See “Viewing Block Implementation
and Implementation Parameter
Settings in the HDL Block Properties
Dialog Box” on page 4-5

See “Obtaining Block-level HDL
Settings” on page 4-22

Obtain current
HDL-related
settings for a
model

See Chapter 3, “Code Generation
Options in the Simulink® HDL Coder
Dialog Boxes”

See “Obtaining Model-level HDL
Settings” on page 4-24

Use a control file
to select block
implementations
and set
implementation
parameters

See “A Note on Control Files” on page 4-3

Apply block
implementation
and
implementation
parameter
settings from
a control file to a
model

N/A See hdlapplycontrolfile

A Note on Control Files
As of release R2010b, use of control files is no longer recommended. The
coder now saves all non-default block implementation and implementation
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parameters settings to the model, eliminating the need to load and save a
separate control file.

If you have existing models with attached control files, you should convert
them to the current format. To do this, simply open the model and save it.

For backward compatibility, the coder continues to support models that
have attached control files. For further information about control files, and
compatibility and conversion issues, see: Chapter 17, “Code Generation
Control Files”.
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Viewing Block Implementation and Implementation
Parameter Settings in the HDL Block Properties Dialog Box

The HDL Properties dialog box lets you view and set HDL-related
block properties at the individual block level. This example uses the
simplevectorsum demonstration model to demonstrate how to view HDL
block and subsystem parameters.

The simplevectorsum model is located at
MATLABROOT/toolbox/hdlcoder/hdlcoderdemos/simplevectorsum.mdl.

1 Open the simplevectorsum model.

2 Open the vsum subsystem.

3 Right-click the Sum of Elements block in the vsum subsystem. Then, select
HDL Code Generation > HDL Block Properties from the pulldown
menu.

4 The HDL Properties dialog box for the block opens. The following figure
shows the dialog box.
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5 As shown in the following figure, the HDL Properties dialog box has two
sections:

• The Implementation section contains the Architecture pulldown
menu. The menu lets you select one of three block implementations:
Cascade, Linear (the default) , and Tree.

• The Implementation Parameters section of the dialog box and lets you
view and set the implementation parameters supported by the selected
implementation. All implementations for the Sum of Elements block
support the InputPipeline and OutputPipeline parameters. To learn
about the specific implementations and implementation parameters
supported by any block, see “Summary of Block Implementations” on
page 5-3.
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6 Close the dialog box. Then close the vsum subsystem.

7 In the top-level model window, right-click on the vsum subsystem. Then,
select HDL Code Generation > HDL Block Properties from the
pulldown menu.

8 The HDL Properties dialog box for the subsystem opens. The following
figure shows the dialog box.
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Like the HDL Properties dialog box for the Sum of Elements block, the
HDL Properties dialog box for the vsum subsystem has two sections:

• The Implementation section contains the Architecture pulldown
menu. Since the coder supports only one implementation for the
Subsystem block, this menu offers only one choice..

• The Implementation Parameters section of the dialog box and lets
you view and set the implementation parameters supported by the
selected implementation. Like most blocks, the Subsystem block
supports the InputPipeline and OutputPipeline parameters. In
addition, the Subsystem block supports the DistributedPipelining,
SharingFactor and StreamingFactor parameters. To learn about the
specific implementations and implementation parameters supported by
any block, see “Summary of Block Implementations” on page 5-3.

9 Click OK to dismiss the dialog.

10 Close the simplevectorsum model.
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Selecting Block Implementations and Setting
Implementation Parameters with the HDL Block Properties
Dialog Box

This example uses the simplevectorsum model to demonstrate how to select
different block implementations in the HDL Block Properties dialog
box. The example also compares excerpts from VHDL code generated with
different implementations.

The simplevectorsum demonstration model is located at
MATLABROOT/toolbox/hdlcoder/hdlcoderdemos/simplevectorsum.mdl.

1 Open the simplevectorsum demonstration model.

2 Save a local copy of the model.

3 Compile the model by performing an update diagram. After the model
compiles, the block diagram updates to show the port data types and signal
dimensions. The following figure shows the top level model.

Open the vsum subsystem. The following figure shows the subsystem.
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4 Right-click the Sum of Elements block in the vsum subsystem. Then, select
HDL Code Generation > HDL Block Properties from the pulldown
menu.

5 The HDL Properties dialog box for the block opens. The following figure
shows the dialog box.

6 As shown in the following figure, the HDL Properties dialog box has two
sections:

• The Implementation section contains the Architecture pulldown
menu. The menu lets you select one of three block implementations:
Cascade, Linear (the default) , and Tree.

• The Implementation Parameters section of the dialog box and lets you
view and set the implementation parameters supported by the selected
implementation. All implementations for the Sum of elements block
support the InputPipeline and OutputPipeline parameters.
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For now, leave all fields of the dialog box at their default values, and close
the dialog box.

7 At the MATLAB command line, type the following command to generate
VHDL code.

makehdl('simplevectorsum/vsum')

8 When code generation completes, click on the link to hdlsrc\vsum.vhd
in the command window. When the Editor window opens, observe the
ARCHITECTURE section of the generated code. This code ( shown in the
following listing) illustrates the default (Linear) implementation for
summation of elements of a vector signal. The Linear implementation
generates a chain of N operations (adders) for N inputs.

ARCHITECTURE rtl OF vsum IS

-- Signals

SIGNAL In1_signed : vector_of_signed16(0 TO 9); -- int16 [10]

SIGNAL Sum_of_Elements_add_temp : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_add_temp_1 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_add_temp_2 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_add_temp_3 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_add_temp_4 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_add_temp_5 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_add_temp_6 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_add_temp_7 : signed(19 DOWNTO 0); -- sfix20
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SIGNAL Sum_of_Elements_out1 : signed(19 DOWNTO 0); -- sfix20

BEGIN

outputgen: FOR k IN 0 TO 9 GENERATE

In1_signed(k) <= signed(In1(k));

END GENERATE;

Sum_of_Elements_add_temp <= resize(In1_signed(0), 20) + resize(In1_signed(1), 20);

Sum_of_Elements_add_temp_1 <= Sum_of_Elements_add_temp + resize(In1_signed(2), 20);

Sum_of_Elements_add_temp_2 <= Sum_of_Elements_add_temp_1 + resize(In1_signed(3), 20);

Sum_of_Elements_add_temp_3 <= Sum_of_Elements_add_temp_2 + resize(In1_signed(4), 20);

Sum_of_Elements_add_temp_4 <= Sum_of_Elements_add_temp_3 + resize(In1_signed(5), 20);

Sum_of_Elements_add_temp_5 <= Sum_of_Elements_add_temp_4 + resize(In1_signed(6), 20);

Sum_of_Elements_add_temp_6 <= Sum_of_Elements_add_temp_5 + resize(In1_signed(7), 20);

Sum_of_Elements_add_temp_7 <= Sum_of_Elements_add_temp_6 + resize(In1_signed(8), 20);

Sum_of_Elements_out1 <= Sum_of_Elements_add_temp_7 + resize(In1_signed(9), 20);

Out1 <= std_logic_vector(Sum_of_Elements_out1);

END rtl;

9 Close the Editor window.

10 Right-click the Sum of Elements block in the vsum subsystem. Then, select
HDL Code Generation > HDL Block Properties from the pulldown
menu. The HDL Properties dialog box for the block opens. This time, select
the Tree implementation.

11 Specify an output pipelining depth of 2 by entering 2 into the
OutputPipeline field. (This specification is only to demonstrate the
generation of pipelining code, not for any practical value.)

12 Click Apply.

The HDL Properties dialog box should now appear as shown in the
following figure.
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13 Click OK to dismiss the dialog.

14 At the MATLAB command line, type the following command to generate
VHDL code.

makehdl('simplevectorsum/vsum')

15 When code generation completes, click on the link to hdlsrc\vsum.vhd
in the command window. When the Editor window opens, observe
the ARCHITECTURE section of the generated code. The following listing
illustrates the signal declarations and the Tree implementation for
summation of a vector signal. The implementation generates a four-stage
tree of adders. The vector input signal is demultiplexed and connected, as
five pairs of operands, to the five adders in the first stage of the tree. At
each stage of the tree, the widths of the adder outputs increase as required
to avoid overflow in computing intermediate results.

-- Signals

SIGNAL enb : std_logic;

SIGNAL In1_signed : vector_of_signed16(0 TO 9); -- int16 [10]

SIGNAL Sum_of_Elements_stage1 : vector_of_signed17(0 TO 4); -- sfix17 [5]

SIGNAL Sum_of_Elements_stage2 : vector_of_signed18(0 TO 2); -- sfix18 [3]

SIGNAL Sum_of_Elements_stage3 : vector_of_signed19(0 TO 1); -- sfix19 [2]

SIGNAL Sum_of_Elements_stage4 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_out1 : signed(19 DOWNTO 0); -- sfix20

SIGNAL Sum_of_Elements_out_pipe_reg : vector_of_signed20(0 TO 1); -- sfix20 [2]

SIGNAL Sum_of_Elements_out1_1 : signed(19 DOWNTO 0); -- sfix20
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BEGIN

outputgen: FOR k IN 0 TO 9 GENERATE

In1_signed(k) <= signed(In1(k));

END GENERATE;

---- Tree sum implementation ----

---- Tree sum stage 1 ----

Sum_of_Elements_stage1(0) <= resize(In1_signed(0), 17) + resize(In1_signed(1), 17);

Sum_of_Elements_stage1(1) <= resize(In1_signed(2), 17) + resize(In1_signed(3), 17);

Sum_of_Elements_stage1(2) <= resize(In1_signed(4), 17) + resize(In1_signed(5), 17);

Sum_of_Elements_stage1(3) <= resize(In1_signed(6), 17) + resize(In1_signed(7), 17);

Sum_of_Elements_stage1(4) <= resize(In1_signed(8), 17) + resize(In1_signed(9), 17);

---- Tree sum stage 2 ----

Sum_of_Elements_stage2(0) <= resize(Sum_of_Elements_stage1(0), 18)...

+ resize(Sum_of_Elements_stage1(1), 18);

Sum_of_Elements_stage2(1) <= resize(Sum_of_Elements_stage1(2), 18)...

+ resize(Sum_of_Elements_stage1(3), 18);

Sum_of_Elements_stage2(2) <= resize(Sum_of_Elements_stage1(4), 18);

---- Tree sum stage 3 ----

Sum_of_Elements_stage3(0) <= resize(Sum_of_Elements_stage2(0), 19)...

+ resize(Sum_of_Elements_stage2(1), 19);

Sum_of_Elements_stage3(1) <= resize(Sum_of_Elements_stage2(2), 19);

---- Tree sum stage 4 ----

Sum_of_Elements_stage4 <= resize(Sum_of_Elements_stage3(0), 20)...

+ resize(Sum_of_Elements_stage3(1), 20);

Sum_of_Elements_out1 <= Sum_of_Elements_stage4;

16 Following the sum computation, observe that the coder has generated two
pipeline registers before the output.

enb <= clk_enable;

Sum_of_Elements_out_pipe_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN
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Sum_of_Elements_out_pipe_reg <= (OTHERS => to_signed(0, 20));

ELSIF clk'EVENT AND clk = '1' THEN

IF enb = '1' THEN

Sum_of_Elements_out_pipe_reg(0) <= Sum_of_Elements_out1;

Sum_of_Elements_out_pipe_reg(1) <= Sum_of_Elements_out_pipe_reg(0);

END IF;

END IF;

END PROCESS Sum_of_Elements_out_pipe_process;

Sum_of_Elements_out1_1 <= Sum_of_Elements_out_pipe_reg(1);

Out1 <= std_logic_vector(Sum_of_Elements_out1_1);

ce_out <= clk_enable;

17 If desired, save your local copy of the model for use in future sessions. All
HDL-related settings, including block implementation and implementation
parameter settings, are saved with the model.

18 Close the simplevectorsum model.
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Selecting Block Implementations with hdlset_param
hdlset_param(path,Name,Value) sets HDL-related parameters in the block
or model referenced by path. One or more Name,Value pair arguments specify
the parameters to be set, and their values. You can specify several name and
value pair arguments in any order as Name1,Value1, ,NameN,ValueN.

This example uses the simplevectorsum model to demonstrate how to select
a block implementations with the hdlset_param function .

The example also shows how to use the hdlget_param function to view the
value of an HDL block parameter.

The simplevectorsum demonstration model is located at
MATLABROOT/toolbox/hdlcoder/hdlcoderdemos/simplevectorsum.mdl.

1 Open the simplevectorsum demonstration model.

2 Save a local copy of the model.

3 From the Simulink Edit menu, select Update Diagram (or press Ctrl+D)
to compile the model. After the model compiles, the block diagram updates
to show the port data types and signal dimensions. The following figure
shows the top level model.

Open the vsum subsystem. The following figure shows the subsystem.
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4 Click on the Sum of Elements block to select it as the DUT.

5 At the MATLAB command line, type the following command to select the
Tree implementation for the Sum of Elements block.

hdlset_param(gcb, 'Architecture', 'Tree');

6 You can verify that the implementation for the Sum of Elements block is
now set to Cascade by querying with the hdlget_param function.

hdlget_param(gcb, 'Architecture')

ans =

Tree

7 At the MATLAB command line, type the following command to generate
VHDL code

makehdl('simplevectorsum/vsum')

8 When code generation completes, click on the link to hdlsrc\vsum.vhd
in the command window. When the Editor window opens, observe
the ARCHITECTURE section of the generated code. The following listing
illustrates the signal declarations and the Tree implementation for
summation of a vector signal. The implementation generates a four-stage
tree of adders. The vector input signal is demultiplexed and connected, as
five pairs of operands, to the five adders in the first stage of the tree. At
each stage of the tree, the widths of the adder outputs increase as required
to avoid overflow in computing intermediate results.

ARCHITECTURE rtl OF Sum_of_Elements IS

-- Signals
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SIGNAL in0_signed : vector_of_signed16(0 TO 9); -- int16 [10]

SIGNAL Sum_of_Elements_stage1 : vector_of_signed17(0 TO 4); -- sfix17 [5]

SIGNAL Sum_of_Elements_stage2 : vector_of_signed18(0 TO 2); -- sfix18 [3]

SIGNAL Sum_of_Elements_stage3 : vector_of_signed19(0 TO 1); -- sfix19 [2]

SIGNAL Sum_of_Elements_stage4 : signed(19 DOWNTO 0); -- sfix20

SIGNAL out0_tmp : signed(19 DOWNTO 0); -- sfix20

BEGIN

outputgen: FOR k IN 0 TO 9 GENERATE

in0_signed(k) <= signed(in0(k));

END GENERATE;

---- Tree sum implementation ----

---- Tree sum stage 1 ----

Sum_of_Elements_stage1(0) <= resize(in0_signed(0), 17) + resize(in0_signed(1), 17);

Sum_of_Elements_stage1(1) <= resize(in0_signed(2), 17) + resize(in0_signed(3), 17);

Sum_of_Elements_stage1(2) <= resize(in0_signed(4), 17) + resize(in0_signed(5), 17);

Sum_of_Elements_stage1(3) <= resize(in0_signed(6), 17) + resize(in0_signed(7), 17);

Sum_of_Elements_stage1(4) <= resize(in0_signed(8), 17) + resize(in0_signed(9), 17);

---- Tree sum stage 2 ----

Sum_of_Elements_stage2(0) <= resize(Sum_of_Elements_stage1(0), 18)...

+ resize(Sum_of_Elements_stage1(1), 18);

Sum_of_Elements_stage2(1) <= resize(Sum_of_Elements_stage1(2), 18)...

+ resize(Sum_of_Elements_stage1(3), 18);

Sum_of_Elements_stage2(2) <= resize(Sum_of_Elements_stage1(4), 18);

---- Tree sum stage 3 ----

Sum_of_Elements_stage3(0) <= resize(Sum_of_Elements_stage2(0), 19)...

+ resize(Sum_of_Elements_stage2(1), 19);

Sum_of_Elements_stage3(1) <= resize(Sum_of_Elements_stage2(2), 19);

---- Tree sum stage 4 ----

Sum_of_Elements_stage4 <= resize(Sum_of_Elements_stage3(0), 20)...

+ resize(Sum_of_Elements_stage3(1), 20);

out0_tmp <= Sum_of_Elements_stage4;

out0 <= std_logic_vector(out0_tmp);
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END rtl;

9 Close the Editor window.

10 If desired, save your local copy of the model for use in future sessions. All
non-default HDL-related settings, including block implementation and
implementation parameter settings, are saved with the model.

11 Close the simplevectorsum model.
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Selecting Implementations and Setting Implementation
Parameters for Multiple Blocks

For models that contain a large number of blocks, using the HDL Block
Properties dialog box to select block implementations or set implementation
parameters for individual blocks may not be practical. It is more efficient to set
HDL-related model or block parameters for multiple blocks programmatically.
You can use the find_system function to locate the blocks of interest. Then,
use a loop to iterate over all the blocks and call hdlset_param to set the
desired parameters.

See the Simulink documentation for detailed information about find_system.

The following example uses the sfir_fixed model to demonstrate how to
locate a group of blocks in a subsystem and specify the output pipeline depth
uniformly for all the blocks.

1 Open the sfir_fixed model.

2 Click on the sfir_fixed/symmetric_fir subsystem to select it.

3 Locate all Product blocks within the subsystem as follows:

prodblocks = find_system(gcb, 'BlockType', 'Product')

prodblocks =

'sfir_fixed/symmetric_fir/Product'

'sfir_fixed/symmetric_fir/Product1'

'sfir_fixed/symmetric_fir/Product2'

'sfir_fixed/symmetric_fir/Product3'

4 Set the output pipeline depth to 2 for all selected blocks.

for ii=1:length(prodblocks), hdlset_param(prodblocks{ii}, 'OutputPipeline', 2), end;

5 To verify the settings, display the value of the OutputPipeline parameter
for the blocks .

for ii=1:length(prodblocks), hdlget_param(prodblocks{ii}, 'OutputPipeline'), end;
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ans =

2

ans =

2

ans =

2

ans =

2
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Obtaining HDL-Related Block and Model Parameter
Information

In this section...

“Obtaining Block-level HDL Settings” on page 4-22

“Obtaining Model-level HDL Settings” on page 4-24

The coder provides several utility functions to help you obtain HDL-related
settings at both the model and block level. The following examples illustrate
typical uses for these functions. See Chapter 21, “Function Reference” for full
syntax summaries of each function.

Obtaining Block-level HDL Settings

hdlget_params
hdlget_param returns the value of a specified HDL parameter, or of all HDL
parameters, for a specified block.

In the following example hdlget_param returns all HDL block parameters
and values to the cell array p.

p = hdlget_param(gcb,'all')

p =

'Architecture' 'Linear' 'InputPipeline' [0] 'OutputPipeline' [0]

In the following example hdlget_param returns the value of the HDL block
parameter OutputPipeline to the variable p.

p = hdlget_param(gcb,'OutputPipeline')

p =

3
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hdldispblkparams
hdldispblkparams displays HDL block parameters for a specified block
without returning a value.

The following example displays all HDL block parameters and values for
the currently selected block.

hdldispblkparams(gcb,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

Architecture : Linear

Implementation Parameters

InputPipeline : 0

OutputPipeline : 0

The following example displays only HDL block parameters that have
non-default values for the currently selected block.

hdldispblkparams(gcb)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

Architecture : Linear

Implementation Parameters

OutputPipeline : 3
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Obtaining Model-level HDL Settings
To display the names and values of HDL-related properties in a model, use
the hdldispmdlparams function.

The following example displays all HDL-related properties and values of the
current model, in alphabetical order by property name.

hdldispmdlparams(bdroot,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%

AddPipelineRegisters : 'off'

Backannotation : 'on'

BlockGenerateLabel : '_gen'

CheckHDL : 'off'

ClockEnableInputPort : 'clk_enable'

.

.

.

VerilogFileExtension : '.v'

The following example displays only HDL-related properties that have
non-default values.

hdldispmdlparams(bdroot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters (non-default)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CodeGenerationOutput : 'GenerateHDLCodeAndDisplayGeneratedModel'

HDLSubsystem : 'simplevectorsum/vsum'

ResetAssertedLevel : 'Active-low'

Traceability : 'on'
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Generating a Supported Blocks Quick Reference Report
You can generate an HTML table that summarizes all blocks that are
supported for HDL Code generation, as follows:

1 Type the following at the MATLAB command line:

hdllib('html');

2 After hdllib builds the hdlsupported.mdl, it types the following message
with hyperlink:

### HDL Supported Block List hdlblklist.html

3 Click on the hdlblklist.html link to see the generated HTML block list.

See also “Supported Blocks Library” on page 10-35.
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Summary of Block Implementations
The following table summarizes all blocks that the coder supports for HDL
code generation and their available implementations in the current release.
The table columns indicate

• Simulink Block: Library path and block name.

• Blockscope: (For use in control files only). Block path and name to be
passed as a blockscope string argument to forEach or forAll.

• Implementations and Parameters: Names of available implementations,
and parameters supported for the implementation (if any). Every block has
at least one implementation.

See Chapter 4, “Specifying Block Implementations and Parameters for
HDL Code Generation” to learn how to select block implementations and
parameters in the GUI or the command line.

Simulink Block Blockscope Implementations and Parameters

commcnvcod2/
Convolutional Encoder

(See “Convolutional
Encoder Block
Requirements and
Restrictions” on page
5-47

commcnvcod2/
Convolutional Encoder

default

Parameters: OutputPipeline,
InputPipeline

commcnvcod2/
Viterbi Decoder

(See “Viterbi Decoder
Block Requirements and
Restrictions” on page
5-57 and “Pipelining the
Traceback Unit” on page
5-58.)

commcnvcod2/
Viterbi Decoder

default

Parameters: OutputPipeline,
InputPipeline,
TracebackStagesPerPipeline
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Simulink Block Blockscope Implementations and Parameters

commcnvintrlv2/
Convolutional
Deinterleaver

(See “Convolutional
Interleaver and
Deinterleaver Block
Requirements and
Restrictions” on page
5-48.)

commcnvintrlv2/
Convolutional
Deinterleaver

default, ShiftRegister

Parameters: OutputPipeline,
InputPipeline,ResetType

RAM

Parameters: OutputPipeline,
InputPipeline

commcnvintrlv2/
Convolutional Interleaver

(See “Convolutional
Interleaver and
Deinterleaver Block
Requirements and
Restrictions” on page
5-48.)

commcnvintrlv2/
Convolutional Interleaver

default, ShiftRegister

Parameters: OutputPipeline,
InputPipeline,ResetType

RAM

Parameters: OutputPipeline,
InputPipeline

commcnvintrlv2/
General Multiplexed
Deinterleaver

(See “General Multiplexed
Interleaver and
Deinterleaver Block
Requirements and
Restrictions” on page
5-50.)

commcnvintrlv2/
General Multiplexed
Deinterleaver

default, ShiftRegister

Parameters: OutputPipeline,
InputPipeline,ResetType
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Simulink Block Blockscope Implementations and Parameters

commcnvintrlv2/
General Multiplexed
Interleaver

(See “General Multiplexed
Interleaver and
Deinterleaver Block
Requirements and
Restrictions” on page
5-50.)

commcnvintrlv2/
General Multiplexed
Interleaver

default, ShiftRegister

Parameters: OutputPipeline,
InputPipeline,ResetType

commdigbbndpm3/BPSK
Demodulator Baseband

commdigbbndpm3/BPSK
Demodulator Baseband

default

Parameters: OutputPipeline,
InputPipeline

commdigbbndpm3/BPSK
Modulator Baseband

commdigbbndpm3/BPSK
Modulator Baseband

default

Parameters: OutputPipeline,
InputPipeline

commdigbbndpm3/M-PSK
Demodulator Baseband

commdigbbndpm3/M-PSK
Demodulator Baseband

default

Parameters: OutputPipeline,
InputPipeline

commdigbbndpm3/M-PSK
Modulator Baseband

commdigbbndpm3/M-PSK
Modulator Baseband

default

Parameters: OutputPipeline,
InputPipeline

commdigbbndpm3/
Rectangular QAM
Demodulator Baseband

See “Rectangular QAM
Demodulator Baseband
Block Requirements and
Restrictions” on page 5-54

commdigbbndpm3/
Rectangular QAM
Demodulator Baseband

default

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and Parameters

commdigbbndpm3/
Rectangular QAM
Modulator Baseband

See “Rectangular QAM
Modulator Baseband
Block Requirements and
Restrictions” on page 5-55

commdigbbndpm3/
Rectangular QAM
Modulator Baseband

default

Parameters: OutputPipeline,
InputPipeline

commdigbbndpm3/
Rectangular QPSK
Demodulator Baseband

commdigbbndpm3/
Rectangular QPSK
Demodulator Baseband

default

Parameters: OutputPipeline,
InputPipeline

commdigbbndpm3/QPSK
Modulator Baseband

commdigbbndpm3/QPSK
Modulator Baseband

default

Parameters: OutputPipeline,
InputPipeline

commseqgen2/PN Sequence
Generator

(See “PN Sequence
Generator Block
Requirements and
Restrictions” on page
5-53.)

commseqgen2/PN
Sequence Generator

default

Parameters: OutputPipeline,
InputPipeline

discoverylib/HDL
Cosimulation

lfilinklib/HDL
Cosimulation

default

Parameters: See “Interface
Generation Parameters” on page
5-101
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Simulink Block Blockscope Implementations and Parameters

Note Support for Synopsys
Discovery will be removed in a
future release. The Discovery HDL
Cosimulation block is supported in
R2011a for backward compatibility
only.

dspadpt3/LMS Filter

(See “LMS Filter Usage and
Restrictions” on page 5-50.)

dspadpt3/LMS Filter default

Parameters: OutputPipeline,
InputPipeline

dsparch4/Biquad Filter

(See “Biquad Filter
Block Requirements
and Restrictions” on
page 5-47 ,“Pipelining
Implementation
Parameters for Filter
Blocks” on page 5-86, and
“CoeffMultipliers” on page
5-62)

dsparch4/Biquad Filter default

Parameters: OutputPipeline,
InputPipeline, CoeffMultipliers,
AddPipelineRegisters

dsparch4/Digital Filter

(See “Digital Filter
Block Requirements and
Restrictions” on page 5-49
and “CoeffMultipliers” on
page 5-62,“Distributed
Arithmetic Implementation
Parameters for Digital
Filter Blocks” on
page 5-65 ,“Pipelining
Implementation

dsparch4/Digital Filter default

Parameters: OutputPipeline,
InputPipeline, CoeffMultipliers,
DALUTPartition, DARadix,
SerialPartition , ReuseAccum,
AddPipelineRegisters,
MultiplierInputPipeline,
MultiplierOutputPipeline
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Simulink Block Blockscope Implementations and Parameters

Parameters for Filter
Blocks” on page 5-86,
and “Speed vs. Area
Optimizations for FIR
Filter Implementations” on
page 5-95.)

dspindex/Multiport Selector dspindex/Multiport
Selector

default

Parameters: OutputPipeline,
InputPipeline

dspindex/Variable Selector dspindex/Variable Selector default

Parameters: OutputPipeline,
InputPipeline

dspmlti4/CIC Decimation

(See “Multirate CIC
Decimation and Multirate
FIR Decimation
Blocks Requirements
and Restrictions” on
page 5-51.) , and
“Pipelining Implementation
Parameters for Filter
Blocks” on page 5-86

dspmlti4/CIC Decimation default

Parameters: OutputPipeline,
InputPipeline,
AddPipelineRegisters
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Simulink Block Blockscope Implementations and Parameters

dspmlti4/CIC Interpolation

(See “Multirate CIC
Decimation and Multirate
FIR Decimation Blocks
Requirements and
Restrictions” on page
5-51“Multirate CIC
Interpolation and
Multirate FIR Interpolation
Blocks Requirements
and Restrictions”
on page 5-52 , and
“Pipelining Implementation
Parameters for Filter
Blocks” on page 5-86.)

dspmlti4/CIC
Interpolation

default

Parameters: OutputPipeline,
InputPipeline,
AddPipelineRegisters

dspmlti4/FIR Decimation

(See “Multirate CIC
Decimation and Multirate
FIR Decimation Blocks
Requirements and
Restrictions” on page
5-51 ,“CoeffMultipliers” on
page 5-62 , “Distributed
Arithmetic Implementation
Parameters for Digital
Filter Blocks” on page
5-65, and “Speed vs. Area
Optimizations for FIR
Filter Implementations”
on page 5-95and
“Pipelining Implementation
Parameters for Filter
Blocks” on page 5-86

dspmlti4/FIR Decimation default

Parameters: OutputPipeline,
InputPipeline, CoeffMultipliers,
DALUTPartition, DARadix,
SerialPartition ,
AddPipelineRegisters,
MultiplierInputPipeline,
MultiplierOutputPipeline
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Simulink Block Blockscope Implementations and Parameters

dspmlti4/FIR Interpolation

(See “Multirate CIC
Interpolation and
Multirate FIR Interpolation
Blocks Requirements
and Restrictions”
on page 5-52, and
“Pipelining Implementation
Parameters for Filter
Blocks” on page 5-86
“CoeffMultipliers” on page
5-62 ,.)

dspmlti4/FIR
Interpolation

default

Parameters: OutputPipeline,
InputPipeline, CoeffMultipliers,
AddPipelineRegisters

dspsigattribs/Convert 1-D
to 2-D

dspsigattribs/Convert 1-D
to 2-D

default

Parameters: OutputPipeline,
InputPipeline

dspsigattribs/Data Type
Conversion

(See “Data Type Conversion
Block Requirements and
Restrictions” on page 5-49..)

built-in/
DataTypeConversion

default

Parameters: OutputPipeline,
InputPipeline

dspsigattribs/Frame
Conversion

built-in/FrameConversion default

Parameters: OutputPipeline,
InputPipeline

dspsigops/Delay dspsigops/Delay default

Parameters: OutputPipeline,
InputPipeline, ResetType

dspsigops/Downsample dspsigops/Downsample default

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and Parameters

dspsigops/Upsample dspsigops/Upsample default

Parameters: OutputPipeline,
InputPipeline

dspsigops/NCO

(See “NCO Block
Requirements and
Restrictions” on page
5-53.)

dspsigops/NCO default

Parameters: OutputPipeline,
InputPipeline

dspsnks4/Matrix Viewer dspsnks4/Matrix Viewer default, No HDL

dspsnks4/Signal To
Workspace

built-in/SignalToWorkspace default, No HDL

dspsnks4/Spectrum Scope dspsnks4/Spectrum Scope default, No HDL

dspsnks4/Time Scope built-in/Scope default, No HDL

dspsnks4/Vector Scope dspsnks4/Vector Scope default, No HDL

dspsnks4/Waterfall dspsnks4/Waterfall default, No HDL

dspsrcs4/DSP Constant dspsrcs4/DSP Constant default, Constant

Parameters: OutputPipeline

dspsrcs4/Sine Wave

(See “Sine Wave Block
Requirements and
Restrictions” on page
5-55.)

dspsrcs4/Sine Wave default

Parameters: OutputPipeline,
InputPipeline

dspstat3/Maximum dspstat3/Maximum default, Tree
Parameters: OutputPipeline,
InputPipeline. Cascade

Parameters: OutputPipeline,
InputPipeline.
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Simulink Block Blockscope Implementations and Parameters

dspstat3/Minimum dspstat3/Minimum default, Tree
Parameters: OutputPipeline,
InputPipeline. Cascade

Parameters: OutputPipeline,
InputPipeline.

hdldemolib/Bit Concat

(See “Bitwise Operators” on
page 7-49.)

hdldemolib/Bit Concat default

Parameters: OutputPipeline,
InputPipeline.

hdldemolib/Bit Reduce

(See “Bitwise Operators” on
page 7-49.)

hdldemolib/Bit Reduce default

Parameters: OutputPipeline,
InputPipeline

hdldemolib/Bit Rotate

(See “Bitwise Operators” on
page 7-49.)

hdldemolib/Bit Rotate default

Parameters: OutputPipeline,
InputPipeline

hdldemolib/Bit Shift

(See “Bitwise Operators” on
page 7-49.)

hdldemolib/Bit Shift default

Parameters: OutputPipeline,
InputPipeline

hdldemolib/Bit Slice

(See “Bitwise Operators” on
page 7-49.)

hdldemolib/Bit Slice default

Parameters: OutputPipeline,
InputPipeline

hdldemolib/Dual Port RAM

(See “Dual Port RAM Block”
on page 7-6.)

hdldemolib/Dual Port
RAM

default

Parameters: OutputPipeline,
InputPipeline, RAMStyle

hdldemolib/HDL Counter

(See “HDL Counter” on
page 7-15.)

hdldemolib/HDL Counter default

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and Parameters

hdldemolib/HDL FFT

(See “HDL FFT” on page
7-27.)

hdldemolib/HDL FFT default

Parameters: OutputPipeline,
InputPipeline

hdldemolib/HDL FIFO

See “HDL FIFO” on page
7-35.)

hdldemolib/HDL FIFO default

Parameters: OutputPipeline,
InputPipeline

hdldemolib/HDL Streaming
FFT

(See “HDL Streaming FFT”
on page 7-39.)

hdldemolib/HDL
Streaming
FFT

default

Parameters: OutputPipeline,
InputPipeline

hdldemolib/Simple Dual
Port RAM

(See “Simple Dual Port
RAM Block” on page 7-7.)

hdldemolib/Simple Dual
Port RAM

default

Parameters: OutputPipeline,
InputPipeline, RAMStyle

hdldemolib/Single Port
RAM

(See “Single Port RAM
Block” on page 7-9.)

hdldemolib/Single Port
RAM

default

Parameters: OutputPipeline,
InputPipeline, RAMStyle

lfilinklib/HDL Cosimulation lfilinklib/HDL
Cosimulation

default

Parameters: See “Interface
Generation Parameters” on page
5-101.

modelsimlib/HDL
Cosimulation

modelsimlib/HDL
Cosimulation

default

Parameters: See “Interface
Generation Parameters” on page
5-101.

modelsimlib/To VCD File modelsimlib/To VCD File default, No HDL
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Simulink Block Blockscope Implementations and Parameters

sflib/Chart

(See also Chapter 12,
“Stateflow HDL Code
Generation Support”,
“DistributedPipelining” on
page 5-75)

sflib/Chart default

Parameters: OutputPipeline,
InputPipeline,
DistributedPipelining,
ResetType,
ConstMultiplierOptimization

sflib/Truth Table sflib/Truth Table default

Parameters: OutputPipeline,
InputPipeline,
DistributedPipelining,
ResetType,
ConstMultiplierOptimization

Signal Routing/From built-in/From default

Parameters: OutputPipeline,
InputPipeline

Signal Routing/Go To built-in/Goto default

Parameters: OutputPipeline,
InputPipeline

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay
Enabled

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay
Enabled

default

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay
Enabled Resettable

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay
Enabled Resettable

default

Parameters: OutputPipeline,
InputPipeline, softreset

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay
Resettable

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay
Resettable

default

Parameters: OutputPipeline,
InputPipeline, softreset
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Simulink Block Blockscope Implementations and Parameters

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Decrement
Real World

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Decrement
Real World

default

Parameters: OutputPipeline,
InputPipeline

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Increment
Real World

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Increment
Real World

default

Parameters: OutputPipeline,
InputPipeline

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Decrement
Stored Integer

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Decrement
Stored Integer

default

Parameters: OutputPipeline,
InputPipeline

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Increment
Store Integer

simulink/Additional Math
& Discrete/
Additional Math:
Increment -
Decrement/Decrement
Real World

default

Parameters: OutputPipeline,
InputPipeline

default, Constant

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Constant

built-in/Constant

Logic Value

Parameters: OutputPipeline,
InputPipeline, Value (see
Built-In/Constant on page 5-33)
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Simulink Block Blockscope Implementations and Parameters

simulink/Commonly
Used Blocks/Data Type
Conversion

(See “Data Type Conversion
Block Requirements and
Restrictions” on page 5-49.)

built-in/
DataTypeConversion

default

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/
Discrete-Time Integrator

(See “Discrete-Time
Integrator Requirements
and Restrictions” on page
5-49.)

built-in/
DiscreteIntegrator

default

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Demux

built-in/Demux default

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Gain

built-in/Gain default

Parameters: All
implementations support
OutputPipeline, InputPipeline,
ConstMultiplierOptimization .

simulink/Commonly Used
Blocks/Ground

built-in/Ground default, Constant

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/In1

built-in/Inport No HDL

(Input ports generate automatically.)

simulink/Commonly Used
Blocks/Logical Operator

built-in/Logic default

Parameters: OutputPipeline,
InputPipeline
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simulink/Commonly Used
Blocks/Mux

built-in/Mux default

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Out1

built-in/Outport default, No HDL

(Output ports generate
automatically.)

default, Linear

Cascade

Tree

Parameters: All implementations
support OutputPipeline,
InputPipeline.

Note: Product blocks that have
a vector input with two or more
elements support Tree and Cascade.

RecipNewton
Parameters: Iterations,
OutputPipeline, InputPipeline.

simulink/Commonly Used
Blocks/Product

built-in/Product

See also “Implementations for
Commonly Used Blocks” on page 5-33

simulink/Commonly Used
Blocks/Relational Operator

built-in/
RelationalOperator

default

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Saturation

built-in/Saturate default

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Scope

built-in/Scope default, No HDL
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Simulink Block Blockscope Implementations and Parameters

simulink/Commonly Used
Blocks/Sum

built-in/Sum default, Linear

Cascade

Tree

Parameters: All implementations
support OutputPipeline,
InputPipeline

Note: The coder supports Tree and
Cascade for Sum blocks that have
a single vector input with multiple
elements.

simulink/Commonly Used
Blocks/Switch

built-in/Switch default

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Terminator

built-in/Terminator default, No HDL

simulink/Commonly Used
Blocks/Unit Delay

built-in/UnitDelay default

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Discontinuties/
Saturation Dynamic

simulink/Discontinuties/
Saturation Dynamic

default

Parameters: OutputPipeline,
InputPipeline
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simulink/Discrete/
Discrete FIR Filter

(See “CoeffMultipliers” on
page 5-62, “Distributed
Arithmetic Implementation
Parameters for Digital
Filter Blocks” on page 5-65 ,
“Pipelining Implementation
Parameters for Filter
Blocks” on page 5-86 ,
and “Speed vs. Area
Optimizations for FIR
Filter Implementations” on
page 5-95.)

built-in/
DiscreteFir

default

Parameters: CoeffMultipliers,
DALUTPartition, DARadix,
SerialPartition, ReuseAccum
OutputPipeline, InputPipeline,
AddPipelineRegisters,
MultiplierInputPipeline,
MultiplierOutputPipeline

simulink/Discontinuities/

Saturation

built-in/Saturation default

Parameters: OutputPipeline,
InputPipeline

simulink/Discrete/Integer
Delay

simulink/
Discrete/Integer Delay

default

Parameters: OutputPipeline,
InputPipeline, ResetType, UseRAM

simulink/Discrete/Memory built-in/Memory default

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Discrete/Tapped
Delay

simulink/Discrete/
Tapped Delay

default

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Discrete/
Zero-Order Hold

built-in/ZeroOrderHold default

Parameters: OutputPipeline,
InputPipeline
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simulink/Logic and Bit
Operations/Bit Clear

simulink/Logic and Bit
Operations/Bit Clear

default

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Bit Set

simulink/Logic and Bit
Operations/Bit Set

default

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and
Bit Operations/Bitwise
Operator

simulink/Logic and
Bit Operations/Bitwise
Operator

default

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Compare To
Constant

simulink/Logic and Bit
Operations/Compare To
Constant

default

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Extract Bits

simulink/Logic and Bit
Operations/Extract Bits

default

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Compare To
Zero

simulink/Logic and Bit
Operations/Compare To
Zero

default

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Shift Arithmetic

simulink/Logic and
Bit Operations/Shift
Arithmetic

default

Parameters: OutputPipeline,
InputPipeline

simulink/Lookup
Tables/Direct Lookup
Table (n-D)

(See “Support for Lookup
Table Blocks in HDL Code
Generation” on page 5-108)

built-in/Direct Lookup
Table (n-D)

default
Parameters: OutputPipeline,
InputPipeline.
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simulink/Lookup
Tables/1-D Lookup Table

(See “Support for Lookup
Table Blocks in HDL Code
Generation” on page 5-108.)

built-in/1-D Lookup default, Instantiate

Parameters: OutputPipeline,
InputPipeline.

simulink/Lookup
Tables/n-D Lookup Table

(See “Support for Lookup
Table Blocks in HDL Code
Generation” on page 5-108)

built-in/n-D_Lookup default

Parameters: OutputPipeline,
InputPipeline.

simulink/Lookup
Tables/Prelookup

(See “Support for Lookup
Table Blocks in HDL Code
Generation” on page 5-108)

built-in/Prelookup default

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Abs

built-in/Abs default

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Add

built-in/Sum default, Linear

Cascade

Tree

Parameters: All implementations
support OutputPipeline,
InputPipeline

Note: The coder supports Tree and
Cascade for Add blocks that have
a single vector input with multiple
elements.
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Simulink Block Blockscope Implementations and Parameters

simulink/Math
Operations/Assignment

built-in/Assignment default

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Complex to
Real-Imag

built-in/
ComplexToRealImag

default

Parameters: OutputPipeline,
InputPipeline
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default, Linear

Cascade

Tree

Parameters: All implementations
support OutputPipeline,
InputPipeline

Note: Product blocks that have
a vector input with two or more
elements support Tree and Cascade
implementations.

RecipNewton

Parameters: Iterations,
OutputPipeline, InputPipeline

simulink/Math
Operations/Divide

The reciprocal operation is
a special case, supporting
two implementations, as
described in “Divide Block
Implementations” on page
5-44.)

built-in/Product

See also “Implementations for
Commonly Used Blocks” on page 5-33

simulink/Math
Operations/Magnitude-Angle
to Complex

built-in/MagnitudeAngleToComplexdefault, Pol2CartCordic

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Math Function
(sqrt, reciprocal, conj,
hermitian, transpose)

built-in/Math See “Math Function Block
Implementations” on page 5-39.

simulink/Math
Operations/Matrix
Concatenate

built-in/Concatenate default

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and Parameters

simulink/Math
Operations/MinMax

built-in/MinMax default, Tree
Parameters: OutputPipeline,
InputPipeline. Cascade

Parameters: OutputPipeline,
InputPipeline.

default, Linear

Cascade

Tree

Parameters: All implementations
support OutputPipeline,
InputPipeline

Note: Product blocks that have
a vector input with two or more
elements support Tree and Cascade
implementations.

RecipNewton

Parameters: Iterations,
OutputPipeline, InputPipeline

simulink/Math
Operations/Product of
Elements

built-in/Product

See also “Implementations for
Commonly Used Blocks” on page 5-33

simulink/Math
Operations/Real-Imag
to Complex

built-in/
RealImagtoComplex

default

Parameters: OutputPipeline,
InputPipeline
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default, SqrtFunction

Parameters: UseMultiplier,
OutputPipeline, InputPipeline

RecipSqrtNewton

Parameters: OutputPipeline,
InputPipeline

SqrtBitset

Parameters: UseMultiplier,
OutputPipeline, InputPipeline

simulink/Math
Operations/Reciprocal
Sqrt

(See “Reciprocal Sqrt
Block Requirements and
Restrictions” on page 5-54.)

built-in/Sqrt

SqrtNewton

Parameters: Iterations,
OutputPipeline, InputPipeline

simulink/Math
Operations/Reshape

simulink/Math
Operations/Reshape

default

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Sign

built-in/Signum default

Parameters: OutputPipeline,
InputPipeline

default, SqrtFunction

Parameters: UseMultiplier,
OutputPipeline, InputPipeline

RecipSqrtNewton

Parameters: OutputPipeline,
InputPipeline

SqrtBitset

Parameters: UseMultiplier,
OutputPipeline, InputPipeline

simulink/Math
Operations/Sqrt

built-in/Sqrt
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Simulink Block Blockscope Implementations and Parameters

SqrtNewton

Parameters: Iterations,
OutputPipeline, InputPipeline

simulink/Math
Operations/Subtract

built-in/Sum default, Linear

Cascade

Tree

Parameters: All implementations
support OutputPipeline,
InputPipeline

Note: The coder supports Tree and
Cascade for Subtract blocks that have
a single vector input with multiple
elements.

simulink/Math
Operations/Sum of
Elements

built-in/Sum default, Linear

Cascade

Tree

Parameters: All implementations
support OutputPipeline,
InputPipeline

Note: The coder supports Tree and
Cascade for Sum of Elements blocks
that have a single vector input with
multiple elements.
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simulink/Math
Operations/Trigonometric
Function — sin, cos,
cos + jsin, and sincos
supported, only if you select
the CORDIC approximation
method.
(See “Trigonometric
Function Block
Requirements and
Restrictions” on page
5-55.)

built-in/Trigonometry default, Trigonometric

SinCosCordic

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Unary Minus

built-in/UnaryMinus default

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Vector
Concatenate

built-in/Concatenate default

Parameters: OutputPipeline,
InputPipeline

simulink/Model
Verification/Assertion

built-in/Assertion default, No HDL

simulink/Model
Verification/Check Discrete
Gradient

simulink/Model
Verification/Check
Discrete Gradient

default, No HDL

simulink/Model
Verification/Check Dynamic
Gap

simulink/Model
Verification/Check
Dynamic Gap

default, No HDL

simulink/Model
Verification/Check Dynamic
Lower Bound

simulink/Model
Verification/Check
Dynamic Lower Bound

default, No HDL

simulink/Model
Verification/Check Dynamic
Range

simulink/Model
Verification/Check
Dynamic Range

default, No HDL
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simulink/Model
Verification/Check Dynamic
Upper Bound

simulink/Model
Verification/Check
Dynamic Upper Bound

default, No HDL

simulink/Model
Verification/Check Input
Resolution

simulink/Model
Verification/Check Input
Resolution

default, No HDL

simulink/Model
Verification/Check Static
Gap

simulink/Model
Verification/Check Static
Gap

default, No HDL

simulink/Model
Verification/Check Static
Lower Bound

simulink/Model
Verification/Check Static
Lower Bound

default, No HDL

simulink/Model
Verification/Check Static
Range

simulink/Model
Verification/Check Static
Range

default, No HDL

simulink/Model
Verification/Check Static
Upper Bound

simulink/Model
Verification/Check Static
Upper Bound

default, No HDL

simulink/Model-Wide
Utilities/DocBlock

simulink/Model-Wide
Utilities/DocBlock

default, Annotation

No HDL

simulink/Model-Wide
Utilities/Model Info

simulink/Model-Wide
Utilities/Model Info

default, Annotation

No HDL

simulink/Ports &
Subsystems/Enable

(See “Code Generation
for Enabled and Triggered
Subsystems” on page 11-14.)

built-in/Enable default
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simulink/Ports &
Subsystems/Trigger

(See “Code Generation
for Enabled and Triggered
Subsystems” on page 11-14.)

built-in/Trigger default

Parameters: OutputPipeline,
InputPipeline

simulink/Ports &
Subsystems/Model

built-in/ModelReference default

Parameters: See “Interface
Generation Parameters” on page
5-101.

simulink/Signal
Attributes/Data Type
Duplicate

simulink/Signal
Attributes/Data Type
Duplicate

default, No HDL

simulink/Signal
Attributes/Data Type
Propagation

simulink/Signal
Attributes/Data Type
Propagation

default, No HDL

simulink/Signal
Attributes/Rate Transition

built-in/RateTransition default

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Attributes/Signal
Conversion

built-in/SignalConversion default

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Attributes/Signal
Specification

built-in/
SignalSpecification

default

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Routing/Index Vector

built-in/MultiPortSwitch default

Parameters: OutputPipeline,
InputPipeline
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simulink/Signal
Routing/Multiport Switch

built-in/MultiPortSwitch default

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Routing/Selector

built-in/Selector default

Parameters: OutputPipeline,
InputPipeline

simulink/Sinks/Display built-in/Display default, No HDL

simulink/Sinks/Floating
Scope

built-in/Scope default, No HDL

simulink/Sinks/Stop
Simulation

built-in/Stop default, No HDL

simulink/Sinks/To File built-in/ToFile default, No HDL

simulink/Sinks/To
Workspace

built-in/ToWorkspace default, No HDL

simulink/Sinks/XY Graph simulink/Sinks/XY Graph default, No HDL

simulink/Sources/Counter
Free-Running

simulink/Sources/Counter
Free-Running

default

Parameters: OutputPipeline,
InputPipeline

simulink/Sources/Counter
Limited

simulink/Sources/Counter
Limited

default

Parameters: OutputPipeline,
InputPipeline

simulink/User-Defined
Functions/MATLAB
Function

(See also Chapter 13,
“Generating HDL Code
with the MATLAB
Function Block”,

simulink/User-Defined
Functions/MATLAB
Function

default

Parameters: OutputPipeline,
InputPipeline,
DistributedPipelining,
ResetType,
ConstMultiplierOptimization
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“DistributedPipelining”
on page 5-75)
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Blocks with Multiple Implementations

In this section...

“Overview” on page 5-32

“Implementations for Commonly Used Blocks” on page 5-33

“Math Function Block Implementations” on page 5-39

“Divide Block Implementations” on page 5-44

“Subsystem Interfaces and Special-Purpose Implementations” on page 5-45

“A Note on Cascade Implementations” on page 5-46

Overview
The tables in this section summarize the block types that have multiple
implementations. The Table columns are

• Implementations: This column gives the implementation name.

• Description: This column summarizes the trade-offs involved in choosing
different implementations.

The coder provides a default HDL block implementation for all supported
blocks. If you want to use the default implementation, you do not usually
need to specify it explicitly.

See Chapter 4, “Specifying Block Implementations and Parameters for
HDL Code Generation” to learn how to select block implementations and
parameters in the GUI or the command line.

5-32



Blocks with Multiple Implementations

Implementations for Commonly Used Blocks

Built-In/Constant

Implementations Parameters Description

Unspecified This implementation emits the value of the
Constant block.

default
Constant

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

Unspecified By default, this implementation emits
the character 'Z' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'ZZZZ'.

{'Value', 'Z'} Use this parameter value if the signal is in a
high-impedance state. This implementation
emits the character 'Z' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'ZZZZ'.

{'Value', 'X'} Use this parameter value if the signal is in
an unknown state. This implementation
emits the character 'X' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'XXXX'.

Logic Value

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

Note
The Logic Value implementation does not support the double data
type. If you specify this implementation for a Constant of type double, a
code-generation error occurs.
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Built-In/Gain

Implementations Parameters Description

'ConstMultiplierOptimization',
'none'
(Default)

By default, the coder does not perform
CSD or FCSD optimizations. Code
generated for the Gain block retains
multiplier operations.

'ConstMultiplierOptimization',
'CSD'

When you specify this option, the
generated code decreases the area used
by the model while maintaining or
increasing clock speed, using canonic
signed digit (CSD) techniques. CSD
replaces multiplier operations with
add and subtract operations.

CSD minimizes the number of addition
operations required for constant
multiplication by representing binary
numbers with a minimum count of
nonzero digits.

'ConstMultiplierOptimization',
'FCSD'

This option uses factored CSD (FCSD)
techniques, which replace multiplier
operations with shift and add/subtract
operations on certain factors of the
operands. These factors are generally
prime but can also be a number close
to a power of 2, which favors area
reduction. FCSD lets you achieve a
greater area reduction than CSD, at
the cost of decreasing clock speed.

default

'ConstMultiplierOptimization',
'auto'

When you specify this option, the coder
chooses between the CSD or FCSD
optimizations. The coder chooses the
optimization that yields the most
area-efficient implementation, based
on the number of adders required.
When you specify 'auto', the coder
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Built-In/Gain (Continued)

Implementations Parameters Description

never chooses to use multipliers,
unless conditions are such that CSD or
FCSD optimizations are not possible
(for example, if the design uses
floating-point arithmetic).

Built-In/1-D Lookup Table

Implementations Description

default Nonhierarchical lookup table.

Instantiate This implementation generates an additional
level of HDL hierarchy (which does not exist in
the Simulink model) for the lookup table.

See also “Support for Lookup Table Blocks in HDL Code Generation” on
page 5-108.

DSP System Toolbox/Minimum

Implementations Parameters Description

default
Tree

The Tree implementation is
large and slow but has minimal
latency.

Cascade This implementation is
optimized for latency *
area, with medium speed.
See “A Note on Cascade
Implementations” on page 5-46
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DSP System Toolbox/Maximum

Implementations Parameters Description

default
Tree

The Tree implementation is
large and slow but has minimal
latency.

Cascade This implementation is
optimized for latency *
area, with medium speed.
See “A Note on Cascade
Implementations” on page 5-46

Built-In/MinMax

Implementations Parameters Description

default
Tree

The Tree implementation is
large and slow but has minimal
latency.

Cascade This implementation is
optimized for latency *
area, with medium speed.
See “A Note on Cascade
Implementations” on page 5-46

Built-In/Product

Implementations Parameters Description

Generates a chain of N
operations (multipliers) for N
inputs.

{'InputPipeline', NStages} See “InputPipeline” on page
5-84.

default
Linear

{'OutputPipeline',
NStages}

See “OutputPipeline” on page
5-85.
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Built-In/Product (Continued)

Implementations Parameters Description

This implementation has
minimal latency but is large and
slow. It generates a tree-shaped
structure of multipliers.

Note: Product blocks that have
a vector input with two or more
elements support Tree and
Cascade.

{'InputPipeline', NStages} See “InputPipeline” on page
5-84.

Tree

{'OutputPipeline',
NStages}

See “OutputPipeline” on page
5-85.

This implementation optimizes
latency * area and is faster than
the tree implementation. It
computes partial products and
cascades multipliers.

Note: Product blocks that have
a vector input with two or more
elements support Tree and
Cascade.

See “A Note on Cascade
Implementations” on page 5-46

{'InputPipeline', NStages} See “InputPipeline” on page
5-84.

Cascade

{'OutputPipeline',
NStages}

See “OutputPipeline” on page
5-85
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Built-In/Product (Continued)

Implementations Parameters Description

{'Iterations', N} When you compute a product,
use iterative Newton method.
The argument N specifies the
number of iterations.

The default value for N is 3.

The recommended value for
N is between 2 and 10. The
coder generates a message if
N is outside the recommended
range.

{'InputPipeline', NStages} See “InputPipeline” on page
5-84.

RecipNewton

{'OutputPipeline',
NStages}

See “OutputPipeline” on page
5-85

Note When the Product block is in divide (*/) mode, it supports only integer
data types for HDL code generation.

Built-In/Sum

Implementations Parameters Description

Generates a chain of N operations
(adders ) for N inputs.

Note: The coder supports Tree
and Cascade for Sum blocks that
have a single vector input with
multiple elements.

default
Linear
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Built-In/Sum (Continued)

Implementations Parameters Description

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

{'OutputPipeline',
NStages}

See “OutputPipeline” on page
5-85.

This implementation has
minimal latency but is large and
slow. Generates a tree-shaped
structure of adders.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

Tree

{'OutputPipeline',
NStages}

See “OutputPipeline” on page
5-85.

This implementation optimizes
latency * area and is faster
than the tree implementation.
It computes partial sums and
cascades adders.

See “A Note on Cascade
Implementations” on page
5-46.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

Cascade

{'OutputPipeline',
NStages}

See “OutputPipeline” on page
5-85.

Math Function Block Implementations
The coder supports the Math Function block sqrt ,reciprocal ,conj,
hermitian, and transpose functions for HDL code generation.

By specifying an implementation and parameters, you can choose from
among several algorithms for computing these functions. The following
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tables summarize the available Math Function block implementations and
parameters.

simulink/Math Operations/Math Function (sqrt)

Implementations Parameters Description

{'UseMultiplier',
'on'}

(Default parameter): Compute
sqrt using multiply/add algorithm
(Simulink default algorithm).

{'UseMultiplier',
'off'}

Compute sqrt using bitset
shift/addition algorithm.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84 .

default
SqrtBitset

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

{'Iterations', N} Compute sqrt using iterative
Newton method. The argument N
specifies the number of iterations.

The default value for N is 5.

The recommended value for N
is between 3 and 10. The coder
generates a message if N is outside
the recommended range.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

SqrtNewton

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.
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When you use the sqrt implementations, consider the following:

• Input must be an unsigned scalar value.

• The output is a fixed-point scalar value.

• The Math Function block from the hdllib library has sqrt selected in
its Function menu.

simulink/Math Operations/Math Function (reciprocal)

Implementations Parameters Description

Unspecified (Default) Compute reciprocal as 1/N, using
the HDL divide (/) operator to
implement the division.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

default
Reciprocal

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

{'Iterations', N} Compute reciprocal using iterative
Newton method. The argument N
specifies the number of iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is outside
the recommended range.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

RecipNewton

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

When you use a reciprocal implementation, consider the following:

• Input must be scalar and must have integer or fixed-point (signed or
unsigned) data type.
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• The output must be scalar and have integer or fixed-point (signed or
unsigned) data type.

• Only the Zero rounding mode is supported.

• The Saturate on integer overflow option on the block must be selected.

simulink/Math Operations/Math Function (conj)

Implementations Parameters Description

Unspecified (Default) Compute complex conjugate. See
Math Function in the Simulink
documentation.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

ComplexConjugate

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

simulink/Math Operations/Math Function (hermitian)

Implementations Parameters Description

Unspecified (Default) Compute hermitian. See Math
Function in the Simulink
documentation.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84 .

Hermitian

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.
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simulink/Math Operations/Math Function (transpose)

Implementations Parameters Description

Unspecified (Default) Compute array transpose. See
Math Function in the Simulink
documentation.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84 .

Transpose

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

simulink/Math Operations/Math Function (parent class)

Implementations Parameters Description

Unspecified (Default) Use the default implementation for
the function (sqrt,reciprocal, or
conj) selected on the block.

{'UseMultiplier',
'on'} (use with sqrt only)

If the function selected on the
block is sqrt, compute sqrt using
multiply/add algorithm (Simulink
default algorithm). If the function
selected on the block is not sqrt, an
error results.

{'UseMultiplier',
'off'} (use with sqrt
only)

If the function selected on the block
is sqrt, compute sqrt using bitset
shift/addition algorithm. If the
function selected on the block is not
sqrt, an error results.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

default
Math

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.
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Divide Block Implementations
The Divide block normally supports the Linear,Tree and Cascade
implementations.

However, the reciprocal operation of the Divide block is a special case.
When you select the reciprocal operation, the Divide block supports the
implementations described in the following table.

simulink/Math Operations/Divide (reciprocal computation only)

Implementations Parameters Description

Unspecified (Default) When you compute a reciprocal,
compute 1/N using the HDL divide
(/) operator to implement the
division.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

default
Linear

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85.

{'Iterations', N} When you compute a reciprocal,
use iterative Newton method. The
argument N specifies the number of
iterations.

The default value for N is 3.

The recommended value for N
is between 2 and 10. The coder
generates a message if N is outside
the recommended range.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-84.

RecipNewton

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-85
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When you use a reciprocal implementation, consider the following:

• Input must be scalar and must have integer or fixed-point (signed or
unsigned) data type.

• The output must be scalar and have integer or fixed-point (signed or
unsigned) data type.

• Only the Zero rounding mode is supported.

• The Saturate on integer overflow option on the block must be selected.

Subsystem Interfaces and Special-Purpose
Implementations

Built-In/SubSystem

Implementation Description

BlackBox This implementation generates a black-box interface for subsystems.
That is, the generated HDL code includes only the input/output port
definitions for the subsystem. In this way, you can use a subsystem
in your model to generate an interface to existing manually written
HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

default

No HDL

This implementation completely removes the subsystem from the
generated code. Thus, you can use a subsystem in simulation but treat
it as a “no-op” in the HDL code.

For more information on code generation for subsystems, see the following:

• Chapter 11, “Interfacing Subsystems and Models to HDL Code”.

• “DistributedPipelining” on page 5-75
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Special-Purpose Implementations

Implementation Description

Pass-through
implementations

Provides a pass-through implementation in which the block’s inputs
are passed directly to its outputs. (In effect, the block becomes a wire
in the HDL code.) The coder supports the following blocks with a
pass-through implementation:

• Convert 1-D to 2-D

• Reshape

• Signal Conversion

• Signal Specification

No HDL This implementation completely removes the block from the generated
code. Thus, you can use the block in simulation but treat it as a “no-op”
in the HDL code. This implementation is used for many blocks (such
as Scopes and Assertions) that are significant in simulation but would
be meaningless in HDL code.

You can also use this implementation as an alternative implementation
for subsystems.

For more information related to special-purpose implementations, see
Chapter 11, “Interfacing Subsystems and Models to HDL Code”.

A Note on Cascade Implementations
The coder supports cascade implementations for the Sum of Elements,
Product of Elements, and MinMax blocks. These implementations require
multiple clock cycles to process their inputs; therefore, their inputs must be
kept unchanged for their entire sample-time period. Generated test benches
accomplish this by using a register to drive the inputs.

A recommended design practice, when integrating generated HDL code with
other HDL code, is to provide registers at the inputs. While not strictly
required, adding registers to the inputs improves timing and avoids problems
with data stability for blocks that require multiple clock cycles to process
their inputs.
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Block-Specific Usage, Requirements, and Restrictions for
HDL Code Generation

In this section...

“Block Usage, Requirements, and Restrictions” on page 5-47

“Restrictions on Use of Blocks in the Test Bench” on page 5-58

Block Usage, Requirements, and Restrictions
This section discusses requirements and restrictions that apply to the use of
specific block types in HDL code generation.

Biquad Filter Block Requirements and Restrictions

• Vector and frame inputs are not supported for HDL code generation.

• Initial conditions must be set to zero. HDL code generation is not
supported for nonzero initial states.

• Optimize unity scale values must be selected.

Convolutional Encoder Block Requirements and Restrictions
Input data requirements:

• Must be sample-based,

• Must have boolean or ufix1 data type.

The coder supports only the following coding rates:

• ½ to 1/7

• 2/3

The coder supports only constraint lengths for 3 to 9.

Trellis structure must be specified by the poly2trellis function.
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The coder supports the following Operation mode settings:

• Continuous

• Reset on nonzero input via port

If you select this mode, you must select the Delay reset action to next
time step option. When you select this option, the Convolutional Encoder
block finishes its current computation before executing a reset.

Convolutional Interleaver and Deinterleaver Block
Requirements and Restrictions

Shift Register Based Implementations. The default implementations
for the Convolutional Interleaver and Deinterleaver blocks are shift
register based. If you want to suppress generation of reset logic, set the
implementation parameter ResetType to'none'.

Note that when you set ResetType to'none', no reset is applied to the shift
registers. Mismatches between Simulink and the generated code occur for
some number of samples during the initial phase, when registers are not
fully loaded. To avoid spurious test bench errors, determine the number of
samples required to load all the shift registers. Then, set the Ignore output
data checking (number of samples) option accordingly. (You can use
the IgnoreDataChecking property for this purpose, if you are using the
command-line interface)

RAM Based Implementations. When you select the RAM implementation
for a Convolutional Interleaver or Deinterleaver block, the coder uses RAM
resources instead of shift registers. The implementation has the following
limitations:

When you select the RAM implementation for a Convolutional Interleaver or
Deinterleaver block, the coder uses RAM resources instead of shift registers.

• Double or single data types are not supported for either input or output
signals.

• Initial conditions for the block must be set to zero.

• At least two rows of interleaving are required .

5-48



Block-Specific Usage, Requirements, and Restrictions for HDL Code Generation

Data Type Conversion Block Requirements and Restrictions
If you configure a Data Type Conversion block for double to fixed-point or
fixed-point to double conversion, a warning displays during code generation.

Digital Filter Block Requirements and Restrictions

• If you select the Digital Filter block Discrete-time filter object option,
you must have the DSP System Toolbox software to generate code for the
block.

• Initial conditions must be set to zero. HDL code generation is not
supported for nonzero initial states.

• The coder does not support the Digital Filter block Input port(s) option
for HDL code generation.

• The Digital Filter block supports complex data for all filter structures
except decimators and interpolators. See “Complex Coefficients and Data
Support for the Digital Filter and Biquad Filter Blocks” on page 5-107.

Discrete-Time Integrator Requirements and Restrictions

• Use of state ports is not supported for HDL code generation. Clear the
Show state port option.

• Use of external resets is not supported for HDL code generation. Set
External reset to none.

• Use of external initial conditions is not supported for HDL code generation.
Set Initial condition source to Internal.

• Width of input and output signals must not exceed 32 bits.

Discrete FIR Filter Requirements and Restrictions
The coder does not support unsigned inputs for the Discrete FIR Filter block.

Initial conditions must be set to zero. HDL code generation is not supported
for nonzero initial states.

The coder does not support the following options of the Discrete FIR Filter
block:
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• Coefficient Source : Input Port

• Filter Structure : Lattice MA

FIR Decimation Requirements and Restrictions
Initial conditions must be set to zero. HDL code generation is not supported
for nonzero initial states.

FIR Interpolation Requirements and Restrictions
Initial conditions must be set to zero. HDL code generation is not supported
for nonzero initial states.

General Multiplexed Interleaver and Deinterleaver Block
Requirements and Restrictions

Shift Register Based Implementations. The default implementations
for the General Multiplexed Interleaver and Deinterleaver blocks are shift
register based. If you want to suppress generation of reset logic, set the
implementation parameter ResetType to'none'.

Note that when you set ResetType to'none', no reset is applied to the shift
registers. Mismatches between Simulink and the generated code occur for
some number of samples during the initial phase, when registers are not
fully loaded. To avoid spurious test bench errors, determine the number of
samples required to load all the shift registers. Then, set the Ignore output
data checking (number of samples) option accordingly. (You can use
the IgnoreDataChecking property for this purpose, if you are using the
command-line interface)

LMS Filter Usage and Restrictions
The LMS Filter block has the following restrictions for HDL code generation:

• The coder does not support the Normalized LMS algorithm of the LMS
Filter.

• The Reset port supports only Boolean and unsigned inputs.

• The Adapt port supports only Boolean inputs.
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• Filter length must be greater than or equal to 2.

Usage. By default, the LMS Filter implementation uses a linear sum for
the FIR section of the filter.

The LMS Filter implements a tree summation (which has a shorter critical
path) under the following conditions:

• The LMS Filter is used with real data

• The word length of the Accumulator W’u data type is at least
ceil(log2(filter length)) bits wider than the word length of the
Product W’u data type

• The Accumulator W’u data type has the same fraction length as the
Product W’u data type

Magnitude-Angle to Complex Block Requirements and
Restrictions
The Magnitude-Angle to Complex block supports HDL code generation when
you set Approximation method to CORDIC.

Multirate CIC Decimation and Multirate FIR Decimation Blocks
Requirements and Restrictions
The following requirements apply to both the Multirate CIC Decimation and
Multirate FIR Decimation blocks:

• The coder supports both Coefficient source options (Dialog parameters
or Multirate filter object (MFILT)).

• When you select Multirate filter object (MFILT):

- You can enter either a filter object name or a direct filter specification in
the Multirate filter variable field.

• Vector and frame inputs are not supported for HDL code generation.

For the Multirate FIR Decimation block:

• When you select Multirate filter object (MFILT), the filter object
specified in the Multirate filter variable field must be either a
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mfilt.firdecim object or a mfilt.firtdecim object. If you specify some
other type of filter object, an error will occur.

• When you select Dialog parameters, the following fixed-point options are
not supported for HDL code generation:

- Slope and Bias scaling

- Inherit via internal rule

For the Multirate CIC Decimation block:

• When you select Multirate filter object (MFILT),, the filter object
specified in theMultirate filter variable field must be a mfilt.cicdecim
object. If you specify some other type of filter object, an error will occur.

• When you select Dialog parameters, the Filter Structure option
Zero-latency decimator is not supported for HDL code generation. Select
Decimator in the Filter Structure pulldown menu.

Multirate CIC Interpolation and Multirate FIR Interpolation
Blocks Requirements and Restrictions
The following requirements apply to both the Multirate CIC Interpolation and
Multirate FIR Interpolation blocks:

• The coder supports both Coefficient source options (Dialog parameters
or Multirate filter object (MFILT)).

• When you select Multirate filter object (MFILT):

- You can enter either a filter object name or a direct filter specification in
the Multirate filter variable field.

• Vector and frame inputs are not supported for HDL code generation.

For the Multirate FIR Interpolation block:

• When you select Multirate filter object (MFILT), the filter object
specified in theMultirate filter variable field must be a mfilt.firinterp
object. If you specify some other type of filter object, an error will occur.

• When you select Dialog parameters, the following fixed-point options are
not supported for HDL code generation:
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- Coefficients: Slope and Bias scaling

- Product Output: Inherit via internal rule

For the Multirate CIC Interpolation block:

• When you select Multirate filter object (MFILT), the filter object
specified in theMultirate filter variable field must be a mfilt.cicinterp
object. If you specify some other type of filter object, an error will occur.

• When you select Dialog parameters, the Filter Structure option
Zero-latency interpolator is not supported for HDL code generation.
Select Interpolator in the Filter Structure drop-down menu.

NCO Block Requirements and Restrictions
Inputs:

• The phase increment and phase offset support only integer or fixed-point
data types.

• The phase increment and phase offset can be either scalar or vector values.

Outputs:

• The coder supports only fixed point data types for the quantization error
(Qerr) port and output signals.

Parameters:

• The coder does not support Add internal ditherfor vector inputs

• If Quantize phase is selected, Number of quantized accumulator bits
should be greater than or equal to 4. A checkhdl error occurs if there are
fewer than 4 quantized accumulator bits.

• If Quantize phase is deselected, the accumulatorWord length should be
greater than or equal to 4. A checkhdl error occurs if there are fewer than
4 accumulator bits.

PN Sequence Generator Block Requirements and Restrictions
This block requires Communications System Toolbox software.
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Inputs:

• You can select Input port as the Output mask source on the block.
However, in this case the Mask input signal must be a vector of data type
ufix1.

• If Reset on nonzero input is selected, the input to the Rst port must
have data type Boolean.

Outputs:

• Outputs of type double are not supported for HDL code generation. All
other output types (including bit packed outputs) are supported.

Reciprocal Sqrt Block Requirements and Restrictions
When using this block for HDL code generation, set the Method parameter
to Newton-Raphson.

Rectangular QAM Demodulator Baseband Block Requirements
and Restrictions
The coder has the following requirements and restrictions for the Rectangular
QAM Demodulator Baseband block:

• The block does not support single or double data types for HDL code
generation.

• The coder supports the following Output type options:

- Integer

- Bit is supported only if the Decision Type selected is Hard decision.

• The coder requires that Normalization Method be set to Minimum
Distance Between Symbols, with a Minimum distance of 2.

• The coder requires that Phase offset (rad) be set to a value that is
multiple a of pi/4.
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Rectangular QAM Modulator Baseband Block Requirements
and Restrictions
The coder has the following requirements and restrictions for the Rectangular
QAM Modulator Baseband block:

• The block does not support single or double data types for HDL code
generation.

• When Input Type is set to Bit, the block does not support HDL code
generation for input types other than boolean or ufix1.

The Rectangular QAM Modulator Baseband block does not support HDL code
generation when the input type is set to Bit but the block input is actually
multibit (uint16, for example).

Sine Wave Block Requirements and Restrictions
For HDL code generation, you must select the following Sine Wave block
settings:

• Computation method: Table lookup

• Sample mode: Discrete

Output:

• The output port cannot have data types single or double.

Trigonometric Function Block Requirements and Restrictions
The Trigonometric Function block supports HDL code generation for the
following functions:
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Trigonometric
Function Block
Implementation

Supported
Functions

Supported
Approximation
Methods

sin CORDIC

cos CORDIC

cos + jsin CORDIC

default
Trigonometric

sincos CORDIC

For the sin and cos functions, unsigned data types are supported for CORDIC
approximations.

The coder gives an error when:

• You select any other function on the Trigonometric Function block.

• You select any Approximation method other than CORDIC.

It is good practice to use the default implementation for the Trigonometric
Function block, as shown in the following figure.

See also Trigonometric Function, cordicsin,cordiccos, and cordicsincos.
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Viterbi Decoder Block Requirements and Restrictions
The coder currently supports the following features of the Viterbi Decoder
block:

• Non-recursive encoder/decoder with feed-forward trellis and simple shift
register generation configuration

• Sample based input

• Decoder rates from 1/2 to 1/7

• Constraint length from 3 to 9

When you generate code for the Viterbi Decoder block, observe the following
limitations:

• Punctured code: Do not select this option. Punctured code requires
frame-based input, which the coder does not support.

• Decision type: the coder does not support the Unquantized decision type.

• Error if quantized input values are out of range: The coder does not
support this option.

• Operation mode: The coder supports only the Continuous mode.

• Enable reset input port: The coder does not support this option.

Input and Output Data Types.

• When Decision type is set to Soft decision, the HDL implementation
of theViterbi Decoder block supports fixed-point inputs and output. For
input, the fixed-point data type must be ufixN, where N is the number of
soft decision bits. Signed built-in data types (int8, int16, int32) are not
supported. For output, the HDL implementation of the Viterbi Decoder
block supports all block-supported output data types.

• When Decision type is set to Hard decision, the block supports input
with data types ufix1 and Boolean. For output, the HDL implementation
of the Viterbi Decoder block supports all block-supported output data types.

• The HDL implementation of the Viterbi Decoder block does not support
double and single input data types are not supported. The block does not
support floating point output for fixed-point inputs.
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Pipelining the Traceback Unit. The Viterbi Decoder block decodes every bit
by tracing back through a traceback depth that you define for the block. The
block implements a complete traceback for each decision bit, using registers to
store the minimum state index and branch decision in the traceback decoding
unit. You can specify that the traceback decoding unit be pipelined in order
to improve the performance of the generated circuit. You can add pipeline
registers to the traceback unit by specifying the number of traceback stages
per pipeline register. To do this, use the TracebackStagesPerPipeline
implementation parameter.

The TracebackStagesPerPipeline implementation parameter lets you
balance the circuit performance based on system requirements. A smaller
parameter value indicates the requirement to add more registers to increase
the speed of the traceback circuit. Increasing the number results in a lower
number of registers along with a decrease in the circuit speed.

See the “HDL Code Generation for Viterbi Decoder” demo model for an
example using TracebackStagesPerPipeline.

Demo Model. The “HDL Code Generation for Viterbi Decoder” demo model
demonstrates HDL code generation for a fixed-point Viterbi Decoder block,
with pipelined traceback decoding. To open and run the demo, type the
following command:

showdemo commviterbihdl_m

Restrictions on Use of Blocks in the Test Bench
In a model intended for use in HDL code generation, the DUT is typically
modeled as a subsystem at the top level of the model, driven by other blocks
or subsystems at the top level. These components make up the test bench.

Blocks that belong to the blocksets and toolboxes in the following list should
not be directly connected to the DUT at the top level of the model. Instead,
place them in a subsystem, and connect the subsystem to the DUT. All blocks
in the following blocksets are subject to this restriction:

• SimRF™

• SimDriveline™

• SimEvents®
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• SimMechanics™

• SimPowerSystems™

• Simscape™
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Block Implementation Parameters

In this section...

“Overview” on page 5-60

“ConstMultiplierOptimization” on page 5-61

“CoeffMultipliers” on page 5-62

“Distributed Arithmetic Implementation Parameters for Digital Filter
Blocks” on page 5-65

“DistributedPipelining” on page 5-75

“InputPipeline” on page 5-84

“OutputPipeline” on page 5-85

“Pipelining Implementation Parameters for Filter Blocks” on page 5-86

“RAM” on page 5-90

“ResetType” on page 5-90

“ShiftRegister” on page 5-92

“UseRAM” on page 5-93

“Speed vs. Area Optimizations for FIR Filter Implementations” on page 5-95

“Interface Generation Parameters” on page 5-101

Overview
Block implementation parameters let you control details of the code generated
for specific block implementations. See Chapter 4, “Specifying Block
Implementations and Parameters for HDL Code Generation” to learn how to
select block implementations and parameters in the GUI or the command line.

Property names are strings. The data type of a property value is specific to
the property. This section describes the syntax of each block implementation
parameter and how the parameter affects generated code.
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ConstMultiplierOptimization
The ConstMultiplierOptimization implementation parameter lets you
specify use of canonic signed digit (CSD) or factored CSD optimizations for
processing coefficient multiplier operations in code generated for the following
blocks:

• Gain

• Stateflow chart

• Truth Table

• MATLAB Function

The following table shows the ConstMultiplierOptimization parameter
values.

Implementations Parameters Description

'ConstMultiplierOptimization',
'none'
(Default)

By default, the coder does not perform
CSD or FCSD optimizations. Code
generated for the Gain block retains
multiplier operations.

'ConstMultiplierOptimization',
'CSD'

When you specify this option,
the generated code decreases the
area used by the model while
maintaining or increasing clock
speed, using canonic signed digit
(CSD) techniques. CSD replaces
multiplier operations with add and
subtract operations. CSD minimizes
the number of addition operations
required for constant multiplication
by representing binary numbers with
a minimum count of nonzero digits.

'ConstMultiplierOptimization',
'FCSD'

This option uses factored CSD (FCSD)
techniques, which replace multiplier
operations with shift and add/subtract
operations on certain factors of the
operands. These factors are generally
prime but can also be a number close
to a power of 2, which favors area
reduction. This option lets you achieve

default
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Implementations Parameters Description

a greater area reduction than CSD, at
the cost of decreasing clock speed.

'ConstMultiplierOptimization',
'auto'

When you specify this option, the coder
chooses between the CSD or FCSD
optimizations. The coder chooses the
optimization that yields the most
area-efficient implementation, based
on the number of adders required.
When you specify 'auto', the coder
never chooses to use multipliers,
unless conditions are such that
CSD or FCSD optimizations are not
possible (for example, if the design
uses floating-point arithmetic).

The following figure shows the HDL Block properties options available for
ConstMultiplierOptimization.

CoeffMultipliers
The CoeffMultipliers implementation parameter lets you specify use of
canonic signed digit (CSD) or factored CSD optimizations for processing
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coefficient multiplier operations in code generated for certain filter blocks.
Specify the CoeffMultipliers parameter using one of the following options:

• 'csd': Use CSD techniques to replace multiplier operations with shift
and add operations. CSD techniques minimize the number of addition
operations required for constant multiplication by representing binary
numbers with a minimum count of nonzero digits. This representation
decreases the area used by the filter while maintaining or increasing clock
speed.

• 'factored-csd': Use factored CSD techniques, which replace multiplier
operations with shift and add operations on prime factors of the coefficients.
This option lets you achieve a greater filter area reduction than CSD, at
the cost of decreasing clock speed.

• 'multipliers' (default): Retain multiplier operations.

In the following figure, the HDL Block Properties dialog box specifies that code
generated for a FIR Decimation block in the model uses the CSD optimization.
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The coder supports CoeffMultipliers for the filter block implementations
shown in the following table.

Block Implementation

dsparch4/Biquad Filter default

dsparch4/Digital Filter default

dspmlti4/FIR Decimation default

dspmlti4/FIR Interpolation default

simulink/Discrete/Discrete FIR Filter default
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Distributed Arithmetic Implementation Parameters
for Digital Filter Blocks
Distributed Arithmetic (DA) is a widely used technique for implementing
sum-of-products computations without the use of multipliers. Designers
frequently use DA to build efficient Multiply-Accumulate Circuitry (MAC) for
filters and other DSP applications.

The main advantage of DA is its high computational efficiency. DA distributes
multiply and accumulate operations across shifters, lookup tables (LUTs) and
adders in such a way that conventional multipliers are not required.

The coder supports distributed arithmetic (DA) implementations for
single-rate FIR structures of the Digital Filter and Discrete FIR Filter blocks,
as described in the following table.

Block Implementation FIR Structures That Support DA

dsparch4/Digital Filter default • dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymdir

simulink/Discrete/Discrete FIR Filter default • dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymdir

dspmlti4/FIR Decimation default mfilt.firdecim

This section briefly summarizes the operation of DA. For references on the
theoretical foundations of DA, see “Further References” on page 5-74.

In a DA realization of a FIR filter structure, a sequence of input data words of
width W is fed through a parallel to serial shift register, producing a serialized
stream of bits. The serialized data is then fed to a bit-wide shift register. This
shift register serves as a delay line, storing the bit serial data samples.

The delay line is tapped (based on the input word size W), to form a W-bit
address that indexes into a lookup table (LUT). The LUT stores all possible
sums of partial products over the filter coefficients space. The LUT is followed
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by a shift and adder (scaling accumulator) that adds the values obtained
from the LUT sequentially.

A table lookup is performed sequentially for each bit (in order of significance
starting from the LSB). On each clock cycle, the LUT result is added to the
accumulated and shifted result from the previous cycle. For the last bit (MSB),
the table lookup result is subtracted, accounting for the sign of the operand.

This basic form of DA is fully serial, operating on one bit at a time. If the
input data sequence is W bits wide, then a FIR structure takes W clock cycles
to compute the output. Symmetric and asymmetric FIR structures are an
exception, requiring W+1 cycles, because one additional clock cycle is needed to
process the carry bit of the preadders.

Improving Performance with Parallelism
The inherently bit-serial nature of DA can limit throughput. To improve
throughput, the basic DA algorithm can be modified to compute more than
one bit sum at a time. The number of simultaneously computed bit sums is
expressed as a power of two called the DA radix. For example, a DA radix of 2
(2^1) indicates that one bit sum is computed at a time; a DA radix of 4 (2^2)
indicates that two bit sums are computed at a time, and so on.

To compute more than one bit sum at a time, the LUT is replicated. For
example, to perform DA on 2 bits at a time (radix 4), the odd bits are fed to
one LUT and the even bits are simultaneously fed to an identical LUT. The
LUT results corresponding to odd bits are left-shifted before they are added
to the LUT results corresponding to even bits. This result is then fed into a
scaling accumulator that shifts its feedback value by 2 places.

Processing more than one bit at a time introduces a degree of parallelism
into the operation, improving performance at the expense of area. You can
control the degree of parallelism by specifying the DARadix implementation
parameter. DARadix lets you specify the number of bits processed
simultaneously in DA (see “DARadix Implementation Parameter” on page
5-72).
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Reducing LUT Size
The size of the LUT grows exponentially with the order of the filter. For a
filter with N coefficients, the LUT must have 2^N values. For higher order
filters, LUT size must be reduced to reasonable levels. To reduce the size, you
can subdivide the LUT into a number of LUTs, called LUT partitions. Each
LUT partition operates on a different set of taps. The results obtained from
the partitions are summed.

For example, for a 160-tap filter, the LUT size is (2^160)*W bits, where W is
the word size of the LUT data. Dividing this into 16 LUT partitions, each
taking 10 inputs (taps), the total LUT size is reduced to 16*(2^10)*W bits.

Although LUT partitioning reduces LUT size, more adders are required to
sum the LUT data.

You control how the LUT is partitioned in DA by specifying the
DALUTPartition implementation parameter (see “DALUTPartition
Implementation Parameter” on page 5-68.)

Requirements and Considerations for Generating Distributed
Arithmetic Code
You can control how DA code is generated by using the DALUTPartition and
DARadix implementation parameters. Before using these parameters, review
the following general requirements, restrictions, and other considerations for
generation of DA code.

Requirements Specific to Filter Type. The DALUTPartition and DARadix
parameters have certain requirements and restrictions that are specific to
different filter types. These requirements are included in the discussions of
each parameter:

• “DALUTPartition Implementation Parameter” on page 5-68

• “DARadix Implementation Parameter” on page 5-72

Fixed-Point Quantization Required. Generation of DA code is supported
only for fixed-point filter designs.
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Specifying Filter Precision. The data path in HDL code generated for the
DA architecture is carefully optimized for full precision computations. The
filter result is cast to the output data size only at the final stage when it
is presented to the output.

Distributed arithmetic merges the product and accumulator operations and
does computations at full precision. This approach ignores the Product
output and Accumulator properties of the Digital Filter block and sets
these properties to full precision.

DALUTPartition Implementation Parameter
DALUTPartition enables DA code generation and specifies the number and
size of LUT partitions used for DA.

Specify LUT partitions as a vector of integers [p1 p2...pN] where:

• N is the number of partitions.

• Each vector element specifies the size of a partition. The maximum size for
an individual partition is 12.

• The sum of all vector elements equals the filter length FL. FL is calculated
differently depending on the filter type (see “Specifying DALUTPartition
for Single-Rate Filters” on page 5-68.)

Specifying DALUTPartition for Single-Rate Filters. To determine the
LUT partition for one of the supported single-rate filter types, calculate FL as
shown in the following table. Then, specify the partition as a vector whose
elements sum to FL.

Filter Type Filter Length (FL) Calculation

dfilt.dffir FL = length(find(Hd.numerator~= 0))

dfilt.dfsymfir
dfilt.dfasymfir

FL = ceil(length(find(Hd.numerator~= 0))/2)

The following figure shows a Digital Filter configured for a direct form FIR
filter of length 11.
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The following figure shows how to set one possible LUT partitioning for this
filter:
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You can also specify generation of DA code for your filter design without LUT
partitioning. To do so, specify a vector of one element, whose value is equal
to the filter length. For example, the following figure shows a Digital Filter
configuration for a direct form FIR filter of length 5.
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The following figure shows how to specifiy a partition that is equal to the
filter length.

DARadix Implementation Parameter
DARadix specifies the number of bits processed simultaneously in DA. The
number of bits is expressed as N, which must be:

• A nonzero positive integer that is a power of two

• Such that mod(W, log2(N)) = 0, where W is the input word size of the filter
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The default value for N is 2, specifying processing of one bit at a time, or fully
serial DA, which is slow but low in area. The maximum value for N is 2^W,
where W is the input word size of the filter. This maximum specifies fully
parallel DA, which is fast but high in area. Values of N between these extrema
specify partly serial DA.

You can set the DARadix implementation parameter in the HDL Properties
dialog for a filter block as shown in the following figure.
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Note When setting a DARadix value for symmetrical (dfilt.dfsymfir) and
asymmetrical (dfilt.dfasymfir) filters, see “Considerations for Symmetrical
and Asymmetrical Filters” on page 5-74.

Special Cases

Coefficients with Zero Values. DA ignores taps that have zero-valued
coefficients and reduces the size of the DA LUT accordingly.

Considerations for Symmetrical and Asymmetrical Filters. For
symmetrical (dfilt.dfsymfir) and asymmetrical (dfilt.dfasymfir) filters:

• A bit-level preadder or presubtractor is required to add tap data values
that have coefficients of equal value and/or opposite sign. One extra clock
cycle is required to compute the result because of the additional carry bit.

• The coder takes advantage of filter symmetry where possible. This reduces
the DA LUT size substantially, because the effective filter length for these
filter types is halved.

Holding Input Data in a Valid State. In filters with a DA architecture,
data can be delivered to the outputs N cycles (N >= 2) later than the inputs.
You can use the HoldInputDataBetweenSamples model property to determine
how long (in terms of clock cycles) input data values are held in a valid state,
as follows:

• When HoldInputDataBetweenSamples is set 'on' (the default), input data
values are held in a valid state across N clock cycles.

• When HoldInputDataBetweenSamples is set 'off' , data values are held in
a valid state for only one clock cycle. For the next N-1 cycles, data is in an
unknown state (expressed as 'X') until the next input sample is clocked in.

Further References. Detailed discussions of the theoretical foundations of
DA appear in the following publications:

• Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate
Arrays, Second Edition, Springer, pp 88–94, 128–143
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• White, S.A., Applications of Distributed Arithmetic to Digital Signal
Processing: A Tutorial Review. IEEE ASSP Magazine, Vol. 6, No. 3

DistributedPipelining

Overview
The DistributedPipelining implementation parameter supports distributed
pipeline insertion, an optimization that lets you achieve higher clock rates in
your HDL applications. (Higher clock rates come at the cost of some amount
of latency caused by the introduction of pipeline registers. )

You can apply distributed pipeline insertion when generating HDL code
generated for the following blocks:

• Subsystems

• MATLAB Function blocks within a subsystem

• Stateflow charts within a subsystem

The coder performs distributed pipeline insertion when you specify both of
the following implementation parameters for subsystems, MATLAB Function
blocks, or Stateflow charts:

• {'OutputPipeline', nStages} : the number of pipeline stages (nStages)
must be greater than zero.)

• {'DistributedPipelining', 'on'}: enables distributed pipeline
insertion. (The default value for DistributedPipelining is 'off'.)

Under these conditions, the coder distributes pipeline stages in the generated
code (whenever possible), rather than generating pipeline stages at the
outputs of the HDL code. The nStages argument defines the number of
pipeline stages to be inserted or distributed.

In a small number of cases, the coder generates conventional output pipeline
registers, even if {'DistributedPipelining', 'on'} is specified. See
“Limitations” on page 5-82 for a description of these cases.
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The following table summarizes the combined effect of the
DistributedPipelining and OutputPipeline parameters.

DistributedPipelining OutputPipeline,
nStages

Result

Unspecified (nStages
defaults to 0)

The coder inserts no
pipeline registers.

'off' (default)

nStages > 0 The coder inserts
nStages output
registers at the output
of the subsystem,
MATLAB Function
block or Stateflow
chart.

Unspecified (nStages
defaults to 0)

The coder inserts no
pipeline registers.
DistributedPipelining
has no effect.

'on'

nStages > 0 The coder distributes
nStages registers
inside the subsystem,
MATLAB Function
block or Stateflow
chart, based on critical
path analysis.

Tip To achieve further optimization of code generated with distributed
pipelining, you should perform retiming during RTL synthesis, if possible.
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Tip When using pipelined block implementations, output data may be in an
invalid state for some initial number of samples. To avoid spurious test bench
errors, determine this number. Then set the Ignore output data checking
(number of samples) option (or the IgnoreDataChecking property, if you
are using the command-line interface) accordingly. For further information
see:

• “Ignore output data checking (number of samples)” on page 3-92

• IgnoreDataChecking

Example: Distributed Pipeline Insertion in a Subsystem

• This example employs the dct8_fixed demonstration model to illustrate
how the coder distributes pipeline registers in a subsystem:

• When you specify output pipelining for the subsystem.

• When you specify distributed pipeline insertion for the subsystem.

The demonstration model is available at
MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\dct8_fixed.mdl. The
following figure shows the DUT of the model (dct8_fixed/OneD_DCT8).
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In the following figure, the HDL Block properties dialog box specifies insertion
of 6 pipeline stages at the outputs of the DUT.
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After generating code, the generated model shows the placement of the
pipeline registers (highlighted Integer Delays) at the outputs of the DUT. (See
Chapter 9, “Generating Bit-True Cycle-Accurate Models” if you are unfamiliar
with generated models.)
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In the following figure, the HDL Block properties dialog box specifies
distribution of 6 pipeline stages for each signal path in the DUT..
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After generating code, the generated model shows the distribution of the
pipeline registers at internal points within each signal path. The total number
of pipeline registers for each path is 6.
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Limitations
The following limitations apply to distributed pipeline insertion:

• If a MATLAB Function block or Stateflow chart contains any matrix with
a statically unresolvable index, the coder generates pipeline registers at
the output(s).

• The coder does not support hierarchical distributed pipelining. The coder
distributes pipeline registers around nested Subsystem blocks.

• If a MATLAB Function block defines any persistent variables the coder
generates pipeline registers at the output(s).

• In the current release, if a Stateflow chart contains any state or local
variable, the coder generates pipeline registers at the output(s).

• The latencies of the operations currently chosen are approximate.
Therefore, pipelining results may not be optimal in cases where the relative
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operation latencies in the target platform do not match the trend of the
chosen latencies.

• If you specify 'DistributedPipelining', 'on' for a subsystem that
contains any of the blocks in the following list, the coder issues an error
message and terminates code generation.

To work around this limitation, you can place these blocks inside one or
more subsystems within the top-level subsystem. The coder generates a
black box interface for such subsystems. (See also “Generating a Black Box
Interface for a Subsystem” on page 11-3.)

- Tapped Delay

- M-PSK Demodulator Baseband

- M-PSK Modulator Baseband

- QPSK Demodulator Baseband

- QPSK Modulator Baseband

- BPSK Demodulator Baseband

- BPSK Modulator Baseband

- PN Sequence Generator

- dspsigops/Repeat

- HDL Counter

- dspadpt3/LMS Filter

- dspsrcs4/Sine Wave

- commcnvcod2/Viterbi Decoder

- Triggered Subsystem

- Counter Limited

- Counter Free-Running

- Frame Conversion

• The following blocks allow 'DistributedPipelining', 'on', but the
coder treats them in the same way as it treats nested subsystems. That is,
the coder distributes pipeline registers around nested Subsystem blocks.
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- Sum (Tree or Cascade implementations)

- Product (Tree or Cascade implementations)

- MinMax (Tree or Cascade implementations)

- Upsample

- Downsample

- Rate Transition

- Zero-Order Hold

- Reciprocal Sqrt (RecipSqrtNewton implementation)

- Trigonometric Function (CORDIC Approximation)

- Single Port RAM

- Dual Port RAM

- Simple Dual Port RAM

See Also
“Distributed Pipeline Insertion for MATLAB Function Blocks” on page 13-53

InputPipeline
InputPipeline lets you specify a implementation with input pipelining for
selected blocks. The parameter value specifies the number of input pipeline
stages (pipeline depth) in the generated code.

The following figure shows the InputPipeline parameter set to 2 in the HDL
Properties dialog box for an Add block .
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The following code specifies an input pipeline depth of two stages for all Sum
blocks in the model:

sblocks = find_system(gcb, 'BlockType', 'Sum');

for ii=1:length(sblocks),hdlset_param(sblocks{ii},'InputPipeline', 2), end;

When generating code for pipeline registers, the coder appends a postfix string
to names of input or output pipeline registers. The default postfix string is
_pipe. To customize the postfix string, use the Pipeline postfix option in
the Global Settings / General pane in the HDL Code Generation pane
of the Configuration Parameters dialog box. Alternatively, you can pass
the desired postfix string in the makehdl property PipelinePostfix. See
PipelinePostfix for an example.

OutputPipeline
OutputPipeline lets you specify a implementation with output pipelining for
selected blocks. The parameter value specifies the number of output pipeline
stages (pipeline depth) in the generated code.

The following figure shows the OutputPipeline parameter set to 2 in the
HDL Properties dialog box for an Add block .
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The following code specifies an output pipeline depth of two stages for all Sum
blocks in the model:

sblocks = find_system(gcb, 'BlockType', 'Sum');

for ii=1:length(sblocks),hdlset_param(sblocks{ii},'OutputPipeline', 2), end;

When generating code for pipeline registers, the coder appends a postfix string
to names of input or output pipeline registers. The default postfix string is
_pipe. To customize the postfix string, use the Pipeline postfix option in
the Global Settings / General pane in the HDL Code Generation pane
of the Configuration Parameters dialog box. Alternatively, you can pass
the desired postfix string in the makehdl property PipelinePostfix. See
PipelinePostfix for an example.

See also “Distributed Pipeline Insertion for MATLAB Function Blocks” on
page 13-53.

Pipelining Implementation Parameters for Filter
Blocks
The following implementation parameters for filter blocks provide
block-specific pipelining support.

• AddPipelineRegisters (Default: off): Inserts a pipeline register between
stages of computation in a filter.
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• MultiplierInputPipeline (Default: 0): Generates a specified number of
pipeline stages at multiplier inputs for FIR filter structures.

• MultiplierOutputPipeline (Default: 0): Generates a specified number of
pipeline stages at multiplier outputs for FIR filter structures.

The following figure shows these parameters, set to their default values, in
the HDL Block Properties dialog box for a Digital Filter block.

The following table summarizes the filter blocks that support one or more
of these parameters;
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Filter Block Supports
AddPipelineRegisters

Supports
MultiplierInputPipeline

Supports
MultiplierOutputPipeline

Digital Filter Yes Yes Yes

Discrete FIR
Filter

Yes Yes Yes

FIR
Decimation
(Direct Form
only)

Yes Yes Yes

FIR
Interpolation

Yes N/A N/A

CIC
Decimation

Yes N/A N/A

CIC
Interpolation

Yes N/A N/A

Biquad
Filter

Yes N/A N/A

AddPipelineRegisters Details
The following table summarizes how enabling AddPipelineRegisters
causes thedifferent filter implementations to place pipeline registers, and
the resultant latency.

Filter Block Pipeline Register
Placement

Latency (clock cycles)

Digital Filter
(FIR, Asymmetric FIR,
and Symmetric FIR
filters)

A pipeline register is
added between levels of
a tree-based adder.

Where FL is the filter
lenth:
ceil(log2(FL)

Digital Filter
(FIR Transposed)

A pipeline register
is added after the
products.

1

Digital Filter
(IIR SOS)

Pipeline registers are
added between the
filter sections.

Where NS is number of
sections:
NS-1

5-88



Block Implementation Parameters

Filter Block Pipeline Register
Placement

Latency (clock cycles)

FIR Decimation
(Direct Form only)

One pipeline register is
added between levels of
a tree-based adder, and
one is added after the
products.

Where NZ is the number
of non-zero coefficients:
ceil(log2(NZ))

FIR Interpolation A pipeline register is
added between levels of
a tree-based adder.

Where PL is polyphse
filter length:
ceil(log2(PL))-1

CIC Decimation A pipeline register is
added between the
comb stages of the
differentiators .

Where NS is number of
sections (at the input
side):
NS-1

CIC Interpolation A pipeline register is
added between the
comb stages of the
differentiators.

Where NS is number of
sections
NS

Biquad Filter Pipeline registers are
added between the
filter sections.

Where NS is number of
sections:
NS-1

Limitations
Take note of the following limitations when applying AddPipelineRegisters,
MultiplierInputPipeline, and MultiplierOuputPipeline:

• For FIR Filters, the coder places pipeline stages in the adder tree structure.
In cases where the filter datapath is not full precision, this causes numeric
differences between the original model and the generated model. To avoid
such discrepancies, the coder modifies the filter block parameters in the
generated model to full precision.

• Pipeline stages inserted by AddPipelineRegisters,
MultiplierInputPipeline, and MultiplierOuputPipeline
introduce delays along the path in the model that contains the affected
filter. However, equivalent delays are not introduced on other, parallel
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signal paths. You may need to ensure that such delays are balanced by
using OutputPipeline on parallel data paths.

RAM
The following blocks support RAM based implementations as an alternative
to shift register based implementations.

• commcnvintrlv2/Convolutional Deinterleaver

• commcnvintrlv2/Convolutional Interleaver

The following figure shows the RAM and shift register options in the HDL
Properties dialog box for a Convolutional Deinterleaver .

ResetType
The ResetType implementation parameter lets you suppress generation of
reset logic for the following block types:

• commcnvintrlv2/Convolutional Deinterleaver

• commcnvintrlv2/Convolutional Interleaver

• commcnvintrlv2/General Multiplexed Deinterleaver

• commcnvintrlv2/General Multiplexed Interleaver

• dspsigops/Delay
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• simulink/Additional Math & Discrete/Additional Discrete/Unit Delay
Enabled

• simulink/Commonly Used Blocks/Unit Delay

• simulink/Discrete/Integer Delay

• simulink/Discrete/Memory

• simulink/Discrete/Tapped Delay

• simulink/User-Defined Functions/MATLAB Function

• sflib/Chart

• sflib/Truth Table

The following figure shows the RAM and shift register options in the HDL
Properties dialog box for a Unit Delay block .

When you specify ResetType as 'default', the coder follows the Global
Settings/Advanced Reset type option for the specified blocks.

When you specify ResetType as 'none' for a selection of one or more blocks,
the coder overrides the Global Settings/Advanced Reset type option for the
specified blocks only. Reset signals and synchronous or asynchronous reset
logic (as specified by Reset type) is still generated as required for other
blocks.
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Note that when you set ResetType to'none', no reset is applied to generated
registers. Mismatches between Simulink and the generated code occur for
some number of samples during the initial phase, when registers are not
fully loaded. To avoid spurious test bench errors, determine the number
of samples required to load all registers. Then, set the Ignore output
data checking (number of samples) option accordingly. (You can use
the IgnoreDataChecking property for this purpose, if you are using the
command-line interface.) See alsoIgnoreDataChecking.

The following code specifies suppression of reset logic for a specific unit delay
block within a subsystem.

hdlset_param('rst_examp/ADut/UnitDelay1','ResetType','none');

ShiftRegister
The following blocks support shift register based implementations. (See
“Convolutional Interleaver and Deinterleaver Block Requirements and
Restrictions” on page 5-48.)

• commcnvintrlv2/Convolutional Deinterleaver

• commcnvintrlv2/Convolutional Interleaver

• commcnvintrlv2/General Multiplexed Deinterleaver

• commcnvintrlv2/General Multiplexed Interleaver

The following figure shows the RAM and shift register options in the HDL
Properties dialog box for a Convolutional Deinterleaver .
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UseRAM
The UseRAM implementation parameter enables you to use RAM-based
mapping for a block instead of mapping to a shift register. This
implementation parameter is available for the Integer Delay block.

Mapping of a Single Integer Delay to a RAM

UseRAM Setting Mapping Behavior

off The integer delay always maps to a shift register
in the generated HDL code.

on The integer delay maps to a dual-port RAM block
when all of the following conditions are true:

• The initial value of the delay is zero.

• The delay has one of the following set of numeric
and data type attributes:

- (a) Real scalar with a non-floating-point
data type (such as signed integer, unsigned
integer, fixed point, or Boolean)

- (b) Complex scalar with real and imaginary
parts that use non-floating-point data type
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UseRAM Setting Mapping Behavior

- (c) Vector where each element is either (a) or
(b)

• RAMSize is greater than or equal to the
RAMMappingThreshold value, where RAMSize,
is the product DelayLength * WordLength *
ComplexLength.

- DelayLength is the number of delays that the
Integer Delay block specifies.

- WordLength is the number of bits used to
represent the DelayLength.

- ComplexLength is 2 for complex signals, and
1 otherwise.

If any condition is false, the integer delay maps to
a shift register in the HDL code unless it merges
with other integer delays to map to a single RAM.
For more information, see “Mapping of Multiple
Integer Delays to a RAM” on page 5-94.

The default value of RAMMappingThreshold is 256. To change the threshold,
use hdlset_param. For example, the following command changes the mapping
threshold for the sfir_fixed model to 128 bits:

hdlset_param('sfir_fixed', 'RAMMappingThreshold', 128);

Mapping of Multiple Integer Delays to a RAM
In addition to mapping a single integer delay to a RAM, several integer delays
of equal length can merge into one and then map to a single RAM. This
optimization provides the following benefits:

• Increased occupancy on a single RAM

• Sharing of address generation logic, which minimizes duplication of
identical code
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• Mapping of integer delays to a RAM when the individual delays do not
satisfy the conditions for RAM mapping

The following rules control whether or not multiple integer delays can merge
into one:

• The delays must be at the same level of the subsystem hierarchy.

• The delays must be using the same Simulink sample time.

• The delays must have UseRAM set to on, or the delays were generated by
streaming or resource sharing.

• The delays must have the same ResetType setting.

• The total word length of the merged delay cannot exceed 128 bits.

• The RAMSize of the merged delay is greater than or equal to the
RAMMappingThreshold value, where RAMSize, is the product DelayLength
* WordLength * VectorLength * ComplexLength.

- DelayLength is the total number of delays.

- WordLength is the number of bits used to represent the DelayLength.

- VectorLength is the total number of elements in the merged delay.

- ComplexLength is 2 for complex signals, and 1 otherwise.

Speed vs. Area Optimizations for FIR Filter
Implementations

Overview of Speed vs. Area Optimizations
The coder provides options that extend your control over speed vs. area
tradeoffs in the realization of FIR filter designs. To achieve the desired
tradeoff, you can either specify a fully parallel architecture for generated HDL
filter code, or choose one of several serial architectures.“Parallel and Serial
Architectures” on page 5-96 describes the supported architectures.

The following blocks support these architecture options:

• dsparch4/Digital Filter

• simulink/Discrete/Discrete FIR Filter
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• dspmlti4/FIR Decimation

You can specify the full range of parallel and serial architecture options using
implementation parameters, as described in “Implementation Parameters for
Specifying Speed vs. Area Tradeoffs” on page 5-97

Parallel and Serial Architectures

Fully Parallel Architecture. This is the default option. A fully parallel
architecture uses a dedicated multiplier and adder for each filter tap; all
taps execute in parallel. A fully parallel architecture is optimal for speed.
However, it requires more multipliers and adders than a serial architecture,
and therefore consumes more chip area.

Serial Architectures. Serial architectures reuse hardware resources in time,
saving chip area. The coder provides a range of serial architecture options,
summarized below. All of these architectures have a latency of one clock
period (see “Latency in Serial Architectures” on page 5-97).

The available serial architecture options are

• Fully serial: A fully serial architecture conserves area by reusing multiplier
and adder resources sequentially. For example, a four-tap filter design
would use a single multiplier and adder, executing a multiply/accumulate
operation once for each tap. The multiply/accumulate section of the design
runs at four times the filter’s input/output sample rate. This saves area at
the cost of some speed loss and higher power consumption.

In a fully serial architecture, the system clock runs at a much higher
rate than the sample rate of the filter. Thus, for a given filter design, the
maximum speed achievable by a fully serial architecture will be less than
that of a parallel architecture.

• Partly serial: Partly serial architectures cover the full range of speed vs.
area tradeoffs that lie between fully parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into a number of
serial partitions. The taps within each partition execute serially, but the
partitions execute in parallel with respect to one another. The outputs of
the partitions are summed at the final output.
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When you select a partly serial architecture, you specify the number of
partitions and the length (number of taps) of each partition. For example,
you could specify a four-tap filter with two partitions, each having two taps.
The system clock would run at twice the filter’s sample rate.

• Cascade-serial: A cascade-serial architecture closely resembles a partly
serial architecture. As in a partly serial architecture, the filter taps are
grouped into a number of serial partitions that execute in parallel with
respect to one another. However, the accumulated output of each partition
is cascaded to the accumulator of the previous partition. The output of all
partitions is therefore computed at the accumulator of the first partition.
This technique is termed accumulator reuse. No final adder is required,
which saves area.

The cascade-serial architecture requires an extra cycle of the system clock
to complete the final summation to the output. Therefore, the frequency of
the system clock must be increased slightly with respect to the clock used
in a non-cascade partly serial architecture.

To generate a cascade-serial architecture, you specify a partly serial
architecture with accumulator reuse enabled (see “Implementation
Parameters for Specifying Speed vs. Area Tradeoffs” on page 5-97. If you
do not specify the serial partitions, the coder automatically selects an
optimal partitioning.

Latency in Serial Architectures. Serialization of a filter increases the total
latency of the design by one clock cycle. The serial architectures use an
accumulator (an adder with a register) to add the products sequentially. An
additional final register is used to store the summed result of all the serial
partitions, requiring an extra clock cycle for the operation. An Integer Delay
block is inserted into the generated model after the filter block to handle
latency.

Implementation Parameters for Specifying Speed vs. Area
Tradeoffs
By default, makehdl generates filter code using a fully parallel architecture. If
you want to generate FIR filter code with a fully parallel architecture, you
do not need to specify this explicitly.

Two implementation parameters specify serial architecture options when
generating code via makehdl:
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• 'SerialPartition': This parameter specifies the serial partitioning of
the filter.

• 'ReuseAccum': This parameter enables or disables accumulator reuse.

The following figure shows these parameters (at default vakues) on the HDL
Properties dialog bix for a Digital Filter block.

The table below summarizes how to set these parameters to generate the
desired architecture.
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To Generate
This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Fully parallel Omit this property Omit this property

Fully serial N, where N is the length of the filter Not specified, or 'off'

Partly serial [p1 p2 p3...pN] : a vector of integers having
N elements, where N is the number of serial
partitions. Each element of the vector specifies
the length of the corresponding partition. The
sum of the vector elements must be equal to
the length of the filter. When you define the
partitioning for a partly serial architecture,
consider the following:

• The filter length should be divided as
uniformly as possible into a vector of length
equal to the number of multipliers intended.
For example, if your design requires a filter of
length 9 with 2 multipliers, the recommended
partition is [5 4]. If your design requires 3
multipliers, the recommended partition is[3 3
3] rather than some less uniform division such
as [1 4 4] or [3 4 2].

• If your design is constrained by the need to
compute each output value (corresponding to
each input value) in an exact number N of clock
cycles, use N as the largest partition size and
partition the other elements as uniformly as
possible. For example, if the filter length is 9
and your design requires exactly 4 cycles to
compute the output, define the partition as [4
3 2]. This partition executes in 4 clock cycles,
at the cost of 3 multipliers.

'off'
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To Generate
This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Cascade-serial
with explicitly
specified
partitioning

[p1 p2 p3...pN]: a vector of integers having
N elements, where N is the number of serial
partitions. Each element of the vector specifies
the length of the corresponding partition. The
sum of the vector elements must be equal to
the length of the filter. The values of the vector
elements must be in descending order, except
that the last two element must be equal. For
example, for a filter of length 9, partitions such
as[5 4] or [4 3 2] would be legal, but the
partitions [3 3 3] or [3 2 4] would raise an
error at code generation time.

'on'

Cascade-serial
with
automatically
optimized
partitioning

Omit this property 'on'

Filter Block Settings and Limitations. When you specify SerialPartition
and ReuseAccum for a Digital Filter block, observe the following constraints.

• If you specify Dialog parameters as the Coefficient source:

- Set Transfer function type to FIR (all zeros).

- Select Filter structure as one of : Direct form,, Direct form
symmetric, or Direct form asymmetric.

• If you specify Discrete-time filter object as the Coefficient source,
the filter object must be one of the following:

- dfilt.dffir

- dfilt.dfsymfir

- dfilt.dfasymfir
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When you specify SerialPartition and ReuseAccum for a Discrete FIR Filter
block, select Filter structure as one of the following:

• Direct form

• Direct form symmetric

• Direct form asymmetric

Observe the following limitations for FIR Decimation filters:

• The coder supports SerialPartition only for the FIR Direct Form
structure.

• Accumulator reuse is not supported.

The coder supports serial partitioning for filter blocks only if all settings of
the filter block are in full precision.

Use Full Precision Filter Settings. The coder supports serial partitioning
for filter blocks only if all settings of the filter block are in full precision.

Interface Generation Parameters
Some block implementation parameters let you customize features of an
interface generated for the following block types:

• simulink/Ports & Subsystems/Model

• built-in/Subsystem

• lfilinklib/HDL Cosimulation

• modelsimlib/HDL Cosimulation

• discoverylib/HDL Cosimulation

Note Support for Synopsys Discovery will be removed in a future release.
The Discovery HDL Cosimulation block is supported in R2011a for
backward compatibility only.
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For example, you can specify generation of a black box interface for a
subsystem, and pass parameters that specify the generation and naming
of clock, reset, and other ports in HDL code. For more information about
interface generation parameters, see “Customizing the Generated Interface”
on page 11-43.
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Blocks That Support Complex Data
You can use complex signals in the test bench without restriction.

In the device under test (DUT) selected for HDL code generation, support for
complex signals is limited to a subset of the blocks supported by the coder.
These blocks are listed in the following table. Some restrictions apply for
some of these blocks.

Note All blocks listed support the InputPipeline and OutputPipeline
implementation parameters.

Complex data expands into real and imaginary signals. The naming
conventions for these derived signals are:

• Real components have the same name as the original complex signal,
suffixed with the default string '_re' (for example, x_re). To specify
a different suffix, set the Complex real part postfix option (or the
corresponding ComplexRealPostfix CLI property).

• Imaginary components have the same name as the original complex
signal, suffixed with the string '_im' (for example, x_im). To specify a
different suffix, set the Complex imaginary part postfix option (or the
corresponding ComplexImagPostfix CLI property).

Simulink Block Restrictions

dspadpt3/LMS Filter

dspindex/Variable Selector

dsparch4/Biquad Filter See “Complex Coefficients and Data
Support for the Digital Filter and
Biquad Filter Blocks” on page 5-107

dsparch4/Digital Filter See “Complex Coefficients and Data
Support for the Digital Filter and
Biquad Filter Blocks” on page 5-107

dspindex/Multiport Selector
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Simulink Block Restrictions

dspsigattribs/Convert 1-D to 2-D

dspsigattribs/Frame Conversion

dspsigops/Delay

dspsigops/Downsample

dspsigops/NCO

dspsigops/Upsample

dspsrcs4/DSP Constant

dspsrcs4/Sine Wave

hdldemolib/Dual Port RAM

hdldemolib/Simple Dual Port RAM

hdldemolib/Single Port RAM

hdldemolib/HDL FFT

hdldemolib/HDL Streaming FFT

sflib/Chart

simulink/Additional Math &
Discrete/Additional Discrete/Unit
Delay Enabled

simulink/Commonly Used
Blocks/Constant

simulink/Commonly Used
Blocks/Data Type Conversion

simulink/Commonly Used
Blocks/Demux

simulink/Commonly Used
Blocks/Gain

simulink/Commonly Used
Blocks/Ground

simulink/Commonly Used
Blocks/Product
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Simulink Block Restrictions

simulink/Commonly Used
Blocks/Sum

simulink/Commonly Used
Blocks/Mux

simulink/Commonly Used
Blocks/Relational Operator

~= and == operators only

simulink/Commonly Used
Blocks/Switch

simulink/Commonly Used
Blocks/Unit Delay

simulink/Discrete/Integer Delay

simulink/Discrete/Memory

simulink/Discrete/Zero-Order Hold

simulink/Discrete/Tapped Delay

simulink/Logic and Bit
Operations/Compare To Constant

simulink/Logic and Bit
Operations/Compare To Zero

simulink/Logic and Bit
Operations/Shift Arithmetic

simulink/Lookup Tables/1-D Lookup
Table

simulink/Math Operations/Add

simulink/Math
Operations/Assignment

simulink/Math Operations/Complex
to Real-Imag

simulink/Math Operations/Unary
Minus

5-105



5 Guide to Supported Blocks and Block Implementations

Simulink Block Restrictions

simulink/Math Operations/Math
Function

The conj, hermitian, and
transpose functions support
complex data.

simulink/Math Operations/Matrix
Concatenate

simulink/Math Operations/Product
of Elements

Only the default (linear)
implementation supports complex
data.

Complex division is not supported.

simulink/Math
Operations/Real-Imag to Complex

simulink/Math Operations/Reshape

simulink/Math Operations/Subtract Only the default (linear)
implementation supports complex
data.

simulink/Math Operations/Sum of
Elements

Only the default (linear)
implementation supports complex
data.

simulink/Math Operations/Vector
Concatenate

simulink/Signal Attributes/Rate
Transition

simulink/Signal Attributes/Signal
Conversion

simulink/Signal Attributes/Signal
Specification

simulink/Signal Routing/Index
Vector

simulink/Signal Routing/Multiport
Switch
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Simulink Block Restrictions

simulink/Signal Routing/Selector

simulink/User-Defined
Functions/MATLAB Function

See also “Using Complex Signals” on
page 13-44.

Complex Coefficients and Data Support for the
Digital Filter and Biquad Filter Blocks
The coder supports use of complex coefficients and complex input signals
for all filter structures of the Digital Filter and Biquad Filter blocks, except
decimators and interpolators. In many cases, you can use complex data and
complex coefficients in combination. The following table shows the filter
structures that support complex data and/or coefficients, and the permitted
combinations.

Filter Structure Complex
Data

Complex
Coefficients

Complex Data
and Coefficients

dfilt.dffir Y Y Y

dfilt.dfsymfir Y Y Y

dfilt.dfasymfir Y Y Y

dfilt.dffirt Y Y Y

dfilt.scalar Y Y Y

dfilt.delay Y N/A N/A

mfilt.cicdecim Y N/A N/A

mfilt.cicinterp Y N/A N/A

mfilt.firdecim Y Y N

mfilt.firinterp Y Y N

dfilt.df1sos Y Y Y

dfilt.df1tsos Y Y Y

dfilt.df2sos Y Y Y

dfilt.df2tsos Y Y Y

5-107



5 Guide to Supported Blocks and Block Implementations

Support for Lookup Table Blocks in HDL Code Generation
The coder supports the following lookup table (LUT) blocks:

• simulink/Lookup Tables/n-D Lookup Table

• simulink/Lookup Tables/Prelookup

• simulink/Lookup Tables/Direct Lookup Table (n-D)

• simulink/Lookup Tables/1-D Lookup Table

• simulink/Lookup Tables/2-D Lookup Table

When you configure a lookup table block for HDL code generation, observe the
requirements and limitations described in the following sections.

n-D Lookup Table

Required Block Settings

• Number of table dimensions: The coder supports a maximum dimension
of 2.

• Index search method: Select Evenly spaced points.

• Extrapolation method: The coder supports only Clip. The coder does not
support extrapolation beyond the table bounds.

• Interpolation method: The coder supports only Flat or Linear.

• Diagnostic for out-of-range input: Select Error. If you select any other
options, the coder displays a warning.

• Use last table value for inputs at or above last breakpoint: Select
this check box.

• Require all inputs to have the same data type: Select this check box.

• Fraction: Select Inherit: Inherit via internal rule.

• Integer rounding mode: Select Zero, Floor, or Simplest.
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Avoid Generation of Divide Operator
The coder gives a warning if it encounters conditions under which a division
operation would be needed to match the model’s simulation behavior. The
conditions described in this section will cause the n-D Lookup Table block to
emit a divide operator. When you use the n-D Lookup Table block for HDL
code generation, you should avoid the following conditions:

• If the block is configured to use interpolation, a division operator will be
required. To avoid this, set Interpolation method : to Flat.

• The second way depends on the table spacing. HDL code generation
requires the block to use the "Evenly Spaced Points" algorithm. The block
mapping from the input data type to the zero-based table index in general
requires a division. When the breakpoint spacing is an exact power of 2,
this divide is implemented as a shift instead of as a divide. To adjust the
breakpoint spacing, you can adjust the number of breakpoints in the table
and/or the difference between the left and right bounds of the breakpoint
range.

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between
breakpoints is a power of two. The coder issues a warning if the breakpoint
spacing does not meet this condition. When the breakpoint spacing is a
power of two, you can replace division operations in the prelookup step
with right-shift operations.

• Table data must resolve to a nonfloating-point data type.

• All ports on the block require scalar values.

Prelookup

Required Block Settings

• Index search method: Select Evenly spaced points.

• Extrapolation method: Select Clip.

• Diagnostic for out-of-range input: Select Error. If you select any other
options, the coder displays a warning.
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• Use last breakpoint for input at or above upper limit: Select this
check box.

• Breakpoint data type: Select Inherit: Same as input.

• Integer rounding mode: Select Zero, Floor, or Simplest.

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between
breakpoints is a power of two. The coder issues a warning if the breakpoint
spacing does not meet this condition. When the breakpoint spacing is a
power of two, you can replace division operations in the prelookup step
with right-shift operations.

• All ports on the block require scalar values.

• The coder permits floating-point data for breakpoints.

Direct Lookup Table (n-D)

Required Block Settings

• Number of table dimensions: The coder supports a maximum dimension
of 2.

• Inputs select this object from table: Select Element.

• Make table an input: Clear this check box.

• Diagnostic for out-of-range input: Select Error. If you select any other
options, the coder displays a warning.

Table Data Typing and Sizing

• It is good practice to size each dimension in the table to be a power of two.
The coder issues a warning if the length of any dimension (except the
innermost dimension) is not a power of two. By following this practice, you
can avoid multiplications during table indexing operations and realize a
more efficient table in hardware.
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• Table data must resolve to a nonfloating-point data type. The coder
examines the output port to verify that its data type meets this requirement.

• All ports on the block require scalar values.

1-D Lookup Table
The 1-D Lookup Table block is subject to the same limitations as the n-D
Lookup Table block. See “n-D Lookup Table” on page 5-108 for detailed
information.

2-D Lookup Table
The 2-D Lookup Table block is subject to the same limitations as the n-D
Lookup Table block. See “n-D Lookup Table” on page 5-108 for detailed
information.
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6 Generating HDL Code for Multirate Models

Overview of Multirate Models
The coder supports HDL code generation for single-clock and multiple clock
multirate models. Your model can include blocks running at multiple sample
rates:

• Within the device under test (DUT).

• In the test bench driving the DUT. In this case, the DUT inherits multiple
sample rates from its inputs or outputs.

• In both the test bench and the DUT.

A timing controller entity generates the required rates from a single master
clock using one or more counters, creating multiple clock enables. The
master clock rate is the fastest rate in the model in single clock mode. In
multiple clock mode, it can be any clock in the DUT. The outputs of the timing
controller are clock enable signals running at rates an integer multiple slower
than the timing controller’s master clock

Each timing controller entity definition is written to a separate code file. The
timing controller file and entity names derive from the name of the subsystem
that is selected for code generation (the DUT). To form the timing controller
name, the coder appends the value of the TimingControllerPostfix property
to the DUT name.

When using single clock mode, HDL code generated from multirate models
employs a single master clock that corresponds to the base rate of the DUT.
When using multiple clock mode, HDL code generated from multirate models
employs one clock input for each rate in the DUT. The number of timing
controllers generated in multiple clock mode depends on the design in the
DUT.

In general, generating HDL code for a multirate model does not differ greatly
from generating HDL code for a single-rate model. However, there are a few
requirements and restrictions on the configuration of the model and the use of
specialized blocks (such as Rate Transitions) that apply to multirate models.
These are discussed in the following sections.
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Configuring Multirate Models for HDL Code Generation

In this section...

“Overview” on page 6-3

“Configuring Model Parameters” on page 6-3

“Configuring Sample Rates in the Model” on page 6-4

“Constraints for Rate Transition Blocks and Other Blocks in Multirate
Models” on page 6-4

Overview
Certain requirements and restrictions apply to multirate models that are
intended for HDL code generation. This section provides guidelines on how to
configure model and block parameters to meet these requirements.

Configuring Model Parameters
Before generating HDL code, configure the parameters of your model using
the hdlsetup command. This ensures that your multirate model is set up
correctly for HDL code generation. This section summarizes settings applied
to the model by hdlsetup that are relevant to multirate code generation.
These include:

• Solver options that are recommended or required for HDL code generation:

- Type: Fixed-step.

- Solver: Discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually correct for simulating
discrete systems.

- Tasking mode: Must be explicitly set to SingleTasking. Do not set
Tasking mode to Auto.

• hdlsetup configures the following Diagnostics / Sample time options for
all models:

- Multitask rate transition: error

- Single task rate transition: error
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In multirate models intended for HDL code generation, Rate Transition
blocks must be explicitly inserted when blocks running at different rates
are connected. Setting Multitask rate transition and Single task rate
transition to error ensures that any illegal rate transitions are detected
before code is generated.

Configuring Sample Rates in the Model
The coder requires that at least one valid sample rate (sample time > 0) must
exist in the model. If all rates are 0, –1, or –2, the code generator (makehdl)
and compatibility checker (checkhdl) terminates with an error message.

Constraints for Rate Transition Blocks and Other
Blocks in Multirate Models
This section describes constraints you should observe when configuring Rate
Transition, Upsample, Downsample, Zero-Order Hold, and various types of
delay blocks in multirate models intended for HDL code generation.

Rate Transition Blocks
Rate Transition blocks must be explicitly inserted into the signal path when
blocks running at different rates are connected. For general information
about the Rate Transition block, see the Rate Transition block documentation.

Make sure the data transfer properties for Rate Transition blocks are set as
follows:

• Ensure deterministic data transfer: Selected.

• Ensure data integrity during data transfer: Selected.

Upsample
When configuring Upsample blocks, set Frame based mode to Maintain
input frame size.

When the Upsample block is in this mode, Initial conditions has no effect
on generated code.
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Downsample
Configure Downsample blocks as follows:

• Set Frame based mode to Maintain input frame size.

• Set Sample based mode to Allow multirate.

Given these Downsample block settings, Initial conditions has no effect on
generated code if Sample offset is set to 0.

Delay and Zero-Order Hold Blocks
Use Rate Transition blocks, rather than any of the following block types, to
create rate transitions in models intended for HDL code generation:

• Unit Delay

• Unit Delay Enabled

• Integer Delay

• Tapped Delay

• Zero-Order Hold

All types of Delay blocks listed should be configured to have the same input
and output sample rates.

Zero-Order Hold blocks must be configured with inherited (–1) sample times.
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Example: Model with a Multirate DUT
The following block diagram shows the interior of a subsystem containing
blocks that are explicitly configured with different sample times. The upper
and lower Counter Free-Running blocks have sample times of 10 s and 20 s
respectively. The counter output signals are routed to output ports ST10 and
ST20, which inherit their sample times. The signal path terminating at ST10
runs at the base rate of the model; the signal path terminating at ST20 is a
subrate signal, running at half the base rate of the model.

As shown in the next figure, the outputs of the multirate DUT drive To
Workspace blocks in the test bench. These blocks inherit the sample times
of the DUT outputs.

6-6



Example: Model with a Multirate DUT

The following listing shows the VHDL entity declaration generated for the
DUT.

ENTITY DUT IS

PORT( clk : IN std_logic;

reset : IN std_logic;

clk_enable : IN std_logic;

ce_out_0 : OUT std_logic;

ce_out_1 : OUT std_logic;

ST10 : OUT std_logic_vector(7 DOWNTO 0); -- uint8

ST20 : OUT std_logic_vector(5 DOWNTO 0) -- ufix6

);

END DUT;

The entity has the standard clock, reset, and clock enable inputs and data
outputs for the ST10 and ST20 signals. In addition, the entity has two clock
enable outputs (ce_out_0 and ce_out_1). These clock enable outputs replicate
internal clock enable signals maintained by the timing controller entity.

The following figure, showing a portion of a Mentor Graphics ModelSim
simulation of the generated VHDL code, lets you observe the timing
relationship of the base rate clock (clk), the clock enables, and the computed
outputs of the model.

After the assertion of clk_enable (replicated by ce_out_0), a new value is
computed and output to ST10 for every cycle of the base rate clock.
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A new value is computed and output for subrate signal ST20 for every other
cycle of the base rate clock. An internal signal, enb_1_2_1 (replicated by
ce_out_1) governs the timing of this computation.
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Generating a Global Oversampling Clock

In this section...

“Why Use a Global Oversampling Clock?” on page 6-9

“Requirements for the Oversampling Factor” on page 6-9

“Specifying the Oversampling Factor From the GUI” on page 6-10

“Specifying the Oversampling Factor From the Command Line” on page 6-12

“Resolving Oversampling Rate Conflicts” on page 6-12

Why Use a Global Oversampling Clock?
In many designs, the DUT is not self-contained. For example, consider a DUT
that is part of a larger system that supplies timing signals to all components
under control of a global clock. The global clock typically runs at a higher rate
than some of the components under its control. By specifying such a global
oversampling clock, you can integrate your DUT into a larger system without
using Upsample or Downsample blocks.

To generate global clock logic, you specify an oversampling factor. The
oversampling factor expresses the desired rate of the global oversampling
clock as a multiple of the base rate of your model.

When you specify an oversampling factor, the coder generates the global
oversampling clock and derives the required timing signals from clock signal.
Generation of the global oversampling clock affects only generated HDL code.
The clock does not affect the simulation behavior of your model.

Requirements for the Oversampling Factor
When you specify the oversampling factor for a global oversampling clock,
note these requirements:

• The oversampling factor must be an integer greater than or equal to 1.

• The default value is 1. In the default case, the coder does not generate a
global oversampling clock.
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• Some DUTs require multiple sampling rates for their internal operations.
In such cases, all other rates in the DUT must divide evenly into the global
oversampling rate. For more information, see “Resolving Oversampling
Rate Conflicts” on page 6-12 .

Specifying the Oversampling Factor From the GUI
You can specify the oversampling factor for a global clock from the GUI as
follows:

1 Select the HDL Code Generation > Global Settings pane in the
Configuration Parameters dialog box.

2 For Oversampling factor in the Clock settings section, enter the
desired oversampling factor. In the following figure, Oversampling
factor specifies a global oversampling clock that runs at ten times the
base rate of the model.
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3 Click Generate on the HDL Code Generation pane to initiate code
generation.

The coder reports the oversampling clock rate:

### Begin VHDL Code Generation

### MESSAGE: The design requires 10 times faster clock with respect to the base rate = 1.

### Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd

### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

### HDL Code Generation Complete.
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Specifying the Oversampling Factor From the
Command Line
You can specify the oversampling factor for a global clock from the command
line by setting the 'Oversampling', N property in the makehdl command.
The following example specifies an oversampling factor of 7:

>> makehdl(gcb,'Oversampling', 7)

### Generating HDL for 'sfir_fixed/symmetric_fir'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation

### MESSAGE: The design requires 7 times faster clock with respect to the base rate = 1.

### Working on symmetric_fir_tc as hdlsrc\symmetric_fir_tc.vhd

### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

### HDL Code Generation Complete.

Resolving Oversampling Rate Conflicts

The HDL realization of some designs is inherently mulitrate, even though
the original Simulink model is single-rate. As an example, consider the
simplevectorsum_cascade model (also discussed in “Example: Latency”
on page 9-7).

This model consists of a subsystem, vsum, driven by a vector input of width 10,
with a scalar output. The following figure shows the root level of the model.
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The device under test is the vsum subsystem, shown in the following figure.
The subsystem contains a Sum block, configured for vector summation.

The simplevectorsum_cascade model specifies a cascaded implementation
(SumCascadeHDLEmission) for the Sum block. The generated HDL code for
a cascaded vector Sum block implementation runs at two effective rates: a
faster (oversampling) rate for internal computations and a slower rate for
input/output. The coder reports that the inherent oversampling rate for the
DUT is five times the base rate:

>> makehdl('simplevectorsum_cascade/vsum')

### Generating HDL for 'simplevectorsum_cascade/vsum'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation

### MESSAGE: The design requires 5 times faster clock with respect to the base rate = 1.

...

In some cases, the clock requirements for such a DUT conflict with the global
oversampling rate. To avoid oversampling rate conflicts, verify that all
subrates in the model divide evenly into the global oversampling rate.

For example, if you request a global overampling rate of 8 for the
simplevectorsum_cascade model, the coder displays a warning and
ignores the requested oversampling factor. The coder instead respects the
oversampling factor that the DUT requests:

>> makehdl('simplevectorsum_cascade/vsum', 'Oversampling',8)

### Generating HDL for 'simplevectorsum_cascade/vsum'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.
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### Begin VHDL Code Generation

### WARNING: The design requires 40 times faster clock with respect to the base rate = 1,

which is different from the oversampling value (8). Oversampling value is ignored.

...

An oversampling factor of 10 works in this case:

>> makehdl('simplevectorsum_cascade/vsum', 'Oversampling',10)

### Generating HDL for 'simplevectorsum_cascade/vsum'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation

### MESSAGE: The design requires 10 times faster clock with respect to the base rate = 1.

...
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Generating Multicycle Path Information Files

In this section...

“Overview” on page 6-15

“Format and Content of a Multicycle Path Information File” on page 6-16

“File Naming and Location Conventions ” on page 6-21

“Generating Multicycle Path Information Files Using the GUI” on page 6-21

“Generating Multicycle Path Information Files Using the Command Line”
on page 6-22

“Limitations ” on page 6-22

“Example of Generating a Multicycle Path Information File” on page 6-24

Overview
The coder implements multirate systems in HDL by generating a master clock
running at the model’s base rate, and generating subrate timing signals from
the master clock (see also “Overview of Multirate Models” on page 6-2). The
propagation time between two subrate registers can be more than one cycle of
the master clock. A multicycle path is a path between two such registers.

When synthesizing HDL code, it is often useful to provide an analysis of
multicycle register-to-register paths to the synthesis tool. If the synthesis tool
can identify multicycle paths, you may be able to:

• Realize higher clock rates from your multirate design.

• Reduce the area of your design.

• Reduce the execution time of the synthesis tool.

Using the Generate multicycle path information option (or the
equivalent'MulticyclePathInfo' property for makehdl) you can instruct
the coder to analyze multicycle paths in the generated code, and generate a
multicycle path information file.

A multicycle path information file is a text file that describes one or more
multicycle path constraints. A multicycle path constraint is a timing exception
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– it relaxes the default constraints on the system timing by allowing signals
on a given path to have a longer propagation time. When using multiple clock
mode, the file also contains clock definitions.

Typically a synthesis tool gives every signal a time budget of exactly 1 clock
cycle to propagate from a source register to a destination register. A timing
exception defines a path multiplier N that informs the synthesis tool that a
signal has N clock cycles (N > 1) to propagate from the source to destination
register. The path multiplier expresses some number of cycles of a relative
clock at either the source or destination register. Where a timing exception
is defined for a path, the synthesis tool has more flexibility in meeting the
timing requirements for that path and for the system as a whole.

The generated multicycle path information file does not follow the native
constraint file format of any particular synthesis tool. The file contains all
the multicycle path information required by popular synthesis tools. You
can manually convert this information to multicycle path constraints in the
format required by your synthesis tool, or write a script or tool to perform
the conversion. The next section describes the format of a multicycle path
constraint file in detail.

Format and Content of a Multicycle Path Information
File
The following listing shows a simple multicycle path information file.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constraints Report

% Module: Sbs

% Model: mSbs.mdl

%

% File Name: hdlsrc/Sbs_constraints.txt

% Created: 2009-04-10 09:50:10

% Generated by MATLAB 7.9 and Simulink HDL Coder 1.6

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Multicycle Paths

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FROM : Sbs.boolireg; TO : Sbs.booloreg; PATH_MULT : 2; RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.boolireg_v<0>; TO : Sbs.booloreg_v<0>; PATH_MULT : 2; RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.doubireg; TO : Sbs.douboreg; PATH_MULT : 2; RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.doubireg_v<0>; TO : Sbs.douboreg_v<0>; PATH_MULT : 2; RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.intireg(7:0); TO : Sbs.intoreg(7:0); PATH_MULT : 2; RELATIVE_CLK : source, Sbs.clk;

FROM : Sbs.intireg_v<0>(7:0);TO : Sbs.intoreg_v<0>(7:0);PATH_MULT : 2 RELATIVE_CLK : source,Sbs.clk;

The first section of the file is a header that identifies the source model and
gives other information about how the coder generated the file. this section
terminates with the following comment lines:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Multicycle Paths

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Note For a single-rate model or a model with no multicycle paths, the coder
generates only the header section of the file.

The main body of the file follows. This section contains a flat table, each row
of which defines a multicycle path constraint.

Each constraint consists of four fields. The format of each field is one of the
following:

• KEYWORD : field;

• KEYWORD : subfield1,... subfield_N;

The keyword identifies the type of information contained in the field. The
keyword string in each field terminates with a space followed by a colon.

The delimiter between fields is the semicolon. Within a field, the delimiter
between subfields (if any) is the comma.

The following table defines the fields of a multicycle path constraint, in
left-to-right order.
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Keyword : field (or
subfields)

Field Description

FROM : src_reg_path; The source (or FROM) register of a multicycle path in the
system. The value of src_reg_path is the HDL path of the
source register’s output signal. See also “Register Path Syntax
for FROM : and TO : Fields” on page 6-19 .

TO : dst_reg_path; The destination (or TO) register of a multicycle path in the
system. The FROM register drives the TO register in the
HDL code. The value of dst_reg_path is the HDL path of the
destination register’s output signal. See also “Register Path
Syntax for FROM : and TO : Fields” on page 6-19.

PATH_MULT : N; The path multiplier defines the number of clock cycles that a
signal has to propagate from the source to destination register.
The RELATIVE_CLK field describes the clock associated with the
path multiplier (the relative clock for the path).

The path multiplier value N indicates that the signal has N
clock cycles of its relative clock to propagate from source to
destination register.

The coder does not report register-to-register paths where N =
1, because this is the default path multiplier.

RELATIVE_CLK : relclock,
sysclock;

The RELATIVE_CLK field contains two comma-delimited
subfields. Each subfield expresses the location of the relative
clock in a different form, for the use of different synthesis tools.
The subfields are:

• relclock: Since the coder currently generates only
single-clock systems, this subfield always takes the value
source. In a multi-clock system, the relative clock associated
with a multicycle path could be either the source or
destination register of the path, and this subfield could take
on either of the values source or destination. This usage is
reserved for future release of the coder.

• sysclock: This subfield is intended for use with synthesis
tools that require the actual propagation time for a multicycle
path. sysclock provides the path to the system’s top-level
clock (e.g., Sbs.clk) You can use the period of this clock
and the path multiplier to calculate the propagation time
for a given path.
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Register Path Syntax for FROM : and TO : Fields
The FROM : and TO: fields of a multipath constraint provide the path to a
source or destination register and information about the signal data type,
size, and other characteristics.

Fixed Point Signals. For fixed point signals, the register path has the form

reg_path<ps> (hb:lb)

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between
hierarchical levels is the period, for example:Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle
brackets <> delimit the part select field

• (hb:lb): Bit select field, indicated from high-order bit to low-order bit.
The signal width (hb:lb) is the same as the defined width of the signal in
the HDL code. This representation does not necessarily imply that all bits
of the FROM : register are connected to the corresponding bits of the TO:
register. The actual bit-to-bit connections are determined during synthesis.

Boolean and Double Signals. For boolean and double signals, the register
path has the form

reg_path<ps>

where:

• reg_path is the HDL hierarchical path of the signal. The delimiter between
hierarchical levels is the period (.), for example: Sbs.u_H1.initreg.

• <ps>: Part select (zero-origin integer index) for vector signals. Angle
brackets <> delimit the part select field

For boolean and double signals, no bit select field is present.

Note The format does not distinguish between boolean and double signals.
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Examples. The following table gives several examples of register-to-register
paths as represented in a multicycle path information file.

Path Description

FROM : Sbs.intireg(7:0); TO :
Sbs.intoreg(7:0);

Both signals are fixed point and eight bits wide.

FROM : Sbs.intireg; TO : Sbs.intoreg; Both signals are either boolean or double.

FROM : Sbs.intireg<0>(7:0); TO :
Sbs.intoreg<1>(7:0);

The FROM signal is the first element of a vector.
The TO signal is the second element of a vector.
Both signals are fixed point and eight bits wide.

FROM : Sbs.u_H1.intireg(7:0); TO :
Sbs.intoreg(7:0);

The signal intireg is defined in the module H1,
and H1 is inside the module Sbs. u_H1 is the
instance name of H1 in Sbs. Both signals are
fixed point and eight bits wide.

Ordering of Multicycle Path Constraints
For a given model or subsystem, the ordering of multicycle path constraints
within a multicycle path information file may vary depending on whether the
target language is VHDL or Verilog, and on other factors. The ordering of
constraints may also change in future versions of the coder. When you design
scripts or other tools that process multicycle path information file, do not
build in any assumptions about the ordering of multicycle path constraints
within a file.

Clock Definitions
When you use multiple clock mode, the multicycle path information file also
contains a "Clock Definitions" section, as shown in the following listing. This
section is located after the header and before the "Multicycle Paths" section.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Clock Definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLOCK: Sbs.clk PERIOD: 0.05
CLOCK: Sbs.clk_1_2 BASE_CLOCK: Sbs.clk MULTIPLIER: 2 PERIOD: 0.1

The following table defines the fields for the clock definitions.
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Keyword : field (or
subfields)

Field Description

CLOCK: clock_name Each clock in the design has a CLOCK
definition line.

PERIOD: float_value The Simulink rate (floating point value)
associated with this CLOCK.

BASE_CLOCK:
base_clock_name

Names the master clock. This field does not
appear on the master clock.

MULTIPLIER: int_value Gives the ratio of the period of this clock to
the master clock. This field does not appear
on the master clock.

File Naming and Location Conventions
The file name for the multicycle path information file derives from the name
of the DUT and the postfix string '_constraints', as follows:

DUTname_constraints.txt

For example, if the DUT name is symmetric_fir, the name of the multicycle
path information file is symmetric_fir_constraints.txt.

The coder writes the multicycle path information file to the target .

Generating Multicycle Path Information Files Using
the GUI
By default, the coder does not generate multicycle path information files.
To enable generation of multicycle path information files, select Generate
multicycle path information in the HDL Code Generation > EDA Tool
Scripts pane of the Configuration Parameters dialog box.

When you select Generate multicycle path information, the coder
generates a multicycle path information file each time you initiate code
generation.
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Generating Multicycle Path Information Files Using
the Command Line
To generate a multicycle path information file from the command line, pass
in the property/value pair 'MulticyclePathInfo','on' to makehdl, as in
the following example.

>> makehdl(gcb, 'MulticyclePathInfo','on')

### Generating HDL for 'hdlfirtdecim_multicycle/Subsystem'

### Starting HDL Check.

### HDL Check Complete with 0 error, 0 warning and 4 messages.

### Begin VHDL Code Generation

### Working on Subsystem_tc as hdlsrc\Subsystem_tc.vhd

### Working on hdlfirtdecim_multicycle/Subsystem as hdlsrc\Subsystem.vhd

### Generating package file hdlsrc\Subsystem_pkg.vhd

### Finishing multipath connectivity analysis

### Writing multicycle path information in hdlsrc\Subsystem_constraints.txt

### HDL Code Generation Complete.

Limitations

Unsupported Blocks and Implementations
The following table lists block implementations (and associated Simulink
blocks) that will not contribute to multicycle path constraints information.

Implementation Block(s)

SumCascadeHDLEmission Add, Subtract, Sum, Sum of
Elements

ProductCascadeHDLEmission Product, Product of Elements

MinMaxCascadeHDLEmission MinMax, Maximum, Minimum

ModelReferenceHDLInstantiation Model

SubsystemBlackBoxHDLInstiation SubSystem
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Implementation Block(s)

RamBlockDualHDLInstantiation Dual Port RAM

RamBlockSimpDualHDLInstantiation Simple Dual Port RAM

RamBlockSingleHDLInstantiation Single Port RAM

Limitations on MATLAB Function Blocks and Stateflow Charts

Loop-Carried Dependencies. The coder does not generate constraints for
any MATLAB Function block or Stateflow chart that contains a for loop with
a loop-carried dependency.

Indexing Vector or Matrix Variables. In order to generate constraints
for a vector or matrix index expression, the index expression must be one
of the following:

• A constant

• A for loop induction variable

For example, in the following example of code for a MATLAB Function block,
the index expression reg(i) does not generate constraints.

,

function y = fcn(u)
%#codegen

N=length(u);
persistent reg;
if isempty(reg)

reg = zeros(1,N);
end

y = reg;

for i = 1:N-1
reg(i) = u(i) + reg(i+1);

end
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reg(N) = u(N);

File Generation Time

Tip Generation of constraint files for large models can be slow.

Example of Generating a Multicycle Path Information
File
The “Getting Started with Multicycle Path Constraint Generation” example
illustrates generation of a multicycle path information file using a model of a
decimating filter. To access the demo, enter the following at the command line:

showdemo hdlmulticyclepath
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Properties Supporting Multirate Code Generation

In this section...

“Overview” on page 6-25

“HoldInputDataBetweenSamples” on page 6-25

“OptimizeTimingController” on page 6-25

Overview
This section summarizes coder properties that provide additional control over
multirate code generation.

HoldInputDataBetweenSamples
This property determines how long (in terms of base rate clock cycles) data
values for subrate signals are held in a valid state.

When 'on' (the default), data values for subrate signals are held in a valid
state across each subrate sample period.

When 'off', data values for subrate signals are held in a valid state for only
one base-rate clock cycle. See HoldInputDataBetweenSamples for details.

OptimizeTimingController
This property specifies whether the timing controller generates the required
rates using multiple counters per rate (the default) or a single counter. The
use of multiple counters optimizes generated code for speed and area. See
OptimizeTimingController for details.
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Accessing the hdldemolib Library Blocks
The hdldemolib library provides HDL-specific block implementations
supporting simulation and code generation for:

• Single and dual-port RAMs

• Counter with single-shot and free-running modes

• Minimum resource FFT

• Operations on bits and bit fields

• FIFO (Queue)

These blocks are implemented as subsystems. The blocks provide HDL-specific
functionality that is not currently supported by other Simulink blocks.

To open the hdldemolib library, type the following command at the MATLAB
prompt:

hdldemolib

The following figure shows the top-level hdldemolib library window.
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RAM Blocks

In this section...

“Overview of RAM Blocks” on page 7-4

“Dual Port RAM Block” on page 7-6

“Simple Dual Port RAM Block” on page 7-7

“Single Port RAM Block” on page 7-9

“Code Generation with RAM Blocks” on page 7-12

“Limitations for RAM Blocks” on page 7-13

“Generic RAM and ROM Demos” on page 7-14

Overview of RAM Blocks
The RAM blocks let you:

• Simulate the behavior of a single-port or dual-port RAM in your model.

• Generate an interface to the inputs and outputs of the RAM in HDL code.

• Generate RTL code that can be inferred as a RAM by most synthesis tools,
for most FPGAs.

The RAM blocks are grouped together in the hdldemolib library, as shown in
the following figure. The library provides three type of RAM blocks:

• Dual Port RAM

• Simple Dual Port RAM

• Single Port RAM
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To open the library, type the following command at the MATLAB prompt:

hdldemolib

Then, drag the desired RAM block from the hdldemolib library to your model,
and set the block parameters and connect signals following the guidelines in
the following sections.

RAM Block Demo
The RAM-Based FIR Filter demo (hdlcoderfirram.mdl) provides an example
of VHDL code generation for a Dual Port RAM block. Run this demo to
acquaint yourself with the generated code.

The HDL device under test (DUT) in the model is the FIR_RAM subsystem.
The FIR_RAM subsystem contains a Dual Port RAM block. The entity
and architecture definitions generated for this block are written to
DualPortRAM_Inst0.vhd .
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The code generated for the top-level DUT, FIR_RAM.vhd, contains the
component instantiation for the Dual Port RAM block.

Dual Port RAM Block

Dual Port RAM Block Ports and Parameters
The following figure shows the Dual Port RAM block.

The block has the following input and output ports:

• wr_din : Data input. Only scalar signals can be connected to this port. The
data type of the input signal can be fixed point, integer, or complex, and
can be of any desired width. The port inherits the width and data type of
its input signal.

• wr_addr, rd_addr: Write and read address ports, respectively.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 16 bits ) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.

Vector signals are not accepted at the address ports.
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• wr_en: Write enable. This port must be connected to a Boolean signal.

• wr_dout, rd_dout: Output ports with read data for addresses wr_addr
and rd_addr, respectively.

Tip If data output at the write port is not required, you can achieve better
RAM inference with synthesis tools by using the Simple Dual Port RAM block
rather than the Dual Port RAM block.

Read-During-Write Behavior
During a write, new data appears at the output of the write port (wr_dout)
of the Dual Port RAM block. If a read operation is performed at the same
address at the read port, old data is read at the output (rd_dout).

Simple Dual Port RAM Block

Simple Dual Port RAM Block Ports and Parameters
The following figure shows the Simple Dual Port RAM block.
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This block is similar to the Dual Port RAM. It differs from Dual Port RAM in
its read-during-write behavior, and it does not have the data output at the
write port (wr_dout).

The block has the following input and output ports:

• wr_din : Data input. Only scalar signals can be connected to this port. The
data type of the input signal can be fixed point, integer, or complex, and
can be of any desired width. The port inherits the width and data type of
its input signal.

• wr_addr, rd_addr: Write and read address ports, respectively.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 16 bits) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.

Vector signals are not accepted at the address ports.
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• wr_en: Write enable. This port must be connected to a Boolean signal.

• rd_dout: Output port with read data for addresses wr_addr and rd_addr,
respectively.

Read-During-Write Behavior
During a write operation, if a read operation is performed at the same address
at the read port, old data is read at the output.

Single Port RAM Block

Single Port RAM Block Ports and Parameters
The following figure shows the Single Port RAM block.
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The block has the following input and output ports:

• din : Data input. Only scalar signals can be connected to this port. The
data type of the input signal can be fixed point, integer, or complex, and
can be of any desired width. The port inherits the width and data type of
its input signal.

• addr: Write address port.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 16 bits) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.

Vector signals are not accepted at the address ports.
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• we: Write enable. This port must be connected to a Boolean signal.

• dout: Output port with data for address addr.

Read-During-Write Behavior
The Output data during write drop-down menu provides options that
control how the RAM handles output/read data. These options are:

• New data (default): During a write, new data appears at the output port
(dout).

• Old data: During a write, old data appears at the output port (dout).

Note Depending on your synthesis tool and target device, the setting of
Output data during write may affect the result of RAM inference. See
“Limitations for RAM Blocks” on page 7-13 for further information on
read-during-write behavior in hardware.
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Code Generation with RAM Blocks
The following general considerations apply to code generation for any of the
RAM blocks:

• Code generated for a RAM block is generated to a separate file in the
target folder. The naming convention for this file is blockname.ext, where
blockname is derived from the name assigned to the RAM block, and ext is
the target language filename extension.

• RAM blocks are implemented as subsystems, primarily for use in
simulation. The coder generates a top-level interface (entity and RTL
architecture) for the block; code is not generated for the underlying blocks.
The generated interface is similar to the subsystem interface described in
“Generating a Black Box Interface for a Subsystem” on page 11-3.

• For all RAM blocks, data reads out from the output ports with a latency
of 1 clock cycle.

• The generated code for the RAM blocks does not include a reset signal.
Generation of a reset is omitted because in the presence of a reset signal,
synthesis tools would not infer a RAM from the HDL code.

• Most synthesis tools will infer RAM from the generated HDL code.
However, your synthesis tool may not map the generated code to RAM for
the following reasons:

- A small RAM size: your synthesis tool may implement a small RAM with
registers for better performance.

- The presence of a clock enable signal. It is possible to suppress
generation of a clock enable signal Dual Port RAM and Single Port RAM
blocks, as described in “Limitations for RAM Blocks” on page 7-13.

Take care to verify that your synthesis tool produces the expected result
when synthesizing code generated for the Dual Port RAM block.

If data output at the write port is not required, you can achieve better RAM
inferring with synthesis tools by using the Simple Dual Port RAM block
rather than the Dual Port RAM block.

RAM Block Implementations
The following table shows HDL implementation names and implementation
parameters for each type of RAM block..
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RAM
Block

Implementation Implementation
Parameter

Dual Port
RAM

default RAMStyle

Simple
Dual Port
RAM

default RAMStyle

Single Port
RAM

default RAMStyle

The RAMStyle implementation parameter lets you enable or suppress
generation of clock enable logic. RAMStyle supports the following parameter
values:

• 'default': This is the default value. Generates RAM structures using
HDL templates that include a clock enable signal, and an empty RAM
wrapper.

• 'generic': Generates RAM template without clock enable, and a RAM
wrapper that implements the clock enable logic.

In many cases, you can use the default and leave RAMStyle unspecified.
However, some synthesis tools do not support RAM inference with a clock
enable. You may want to specify RAMStyle as 'generic' if your synthesis
tool does not support RAM structures with a clock enable, and cannot map
generated HDL code to FPGA RAM resources. To learn how to use generic
style RAM for your design, see the Getting Started with RAM and ROM
demo in Simulink demo. To open the demo, type the following command at
the MATLAB prompt:

hdlcoderramrom

Limitations for RAM Blocks
The following limitations apply to the use of RAM blocks in HDL code
generation:

• If you use RAM blocks to perform concurrent read and write operations,
you should manually verify the read-during-write behavior in hardware.
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The read-during-write behavior of the RAM blocks in Simulink matches
that of the generated behavioral HDL code. However, a synthesis tool
may not follow the same behavior during RAM inferring, causing the
read-during-write behavior in hardware to differ from the behavior of the
Simulink model or generated HDL code. Actual read-during-write behavior
in hardware depends on how synthesis tools infer RAM from generated
HDL code, and on the hardware architecture of the target device.

Generic RAM and ROM Demos

Generic RAM Template Supports RAM Without a Clock Enable
Signal
The RAM blocks in the hdldemolib library implement RAM structures using
HDL templates that include a clock enable signal.

However, some synthesis tools do not support RAM inference with a clock
enable. As an alternative, the coder provides a generic style of HDL templates
that do not use a clock enable signal for the RAM structures. The generic RAM
template implements clock enable with logic in a wrapper around the RAM.

You may want to use the generic RAM style if your synthesis tool does not
support RAM structures with a clock enable, and cannot map generated HDL
code to FPGA RAM resources. To learn how to use generic style RAM for your
design, see the Getting Started with RAM and ROM demo in Simulink demo.
To open the demo, type the following command at the MATLAB prompt:

hdlcoderramrom

Generating ROM with 1-D Lookup Table and Unit Delay Blocks
Simulink HDL Coder does not provide a ROM block, but you can easily build
one using basic Simulink blocks. The new Getting Started with RAM and
ROM in Simulink demo includes an example in which a ROM is built using a
1-D Lookup Table block and a Unit Delay block. To open the demo, type the
following command at the MATLAB prompt:

hdlcoderramrom
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HDL Counter

In this section...

“Overview” on page 7-15

“Counter Modes” on page 7-15

“Control Ports” on page 7-17

“Defining the Counter Data Type and Size” on page 7-20

“HDL Implementation and Implementation Parameters” on page 7-21

“Parameters and Dialog Box” on page 7-22

Overview

The HDL Counter block implements a free-running or count-limited hardware
counter that supports signed and unsigned integer and fixed-point data types.

The counter emits its value for the current sample time from the count
output. By default, the counter has no input ports. Optionally, you can add
control ports that let you enable, disable, load, or reset the counter, or set the
direction (positive or negative) of the counter.

Counter Modes
The HDL Counter supports two operation modes, selected from the Counter
type drop-down menu.

Free Running Mode (default)
The counter is initialized to the value defined by the Initial value parameter
upon assertion of a reset signal. The reset signal can be either the model’s
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global reset, or a reset received through an optional Local reset port that
you can define on the HDL Counter block.

On each sample time, the value defined by the Step value parameter is
added to the counter, and the counter emits its current value at the count
output. When the counter value overflows or underflows the counter’s word
size, the counter wraps around and continues the counting sequence until
reset is asserted or the model stops running.

By default, the positive or negative direction of the count is determined by
the sign of the Step value. Optionally, you can define a Count direction
control port on the HDL Counter block.

Free Running Mode Examples. For a 4-bit unsigned integer counter with
an Initial value of 0 and a Step value of 5, the counter output sequence is

0, 5, 10, 15, 4, 9,14,3,...

For a 4-bit signed integer counter with an Initial value of 0 and a Step
value of -2, the counter output sequence is

0,-2,-4,-6,-8,6,4,2,0,-2,-4,...

Count Limited Mode
The counter is initialized to the value defined by the Initial value parameter
upon assertion of a reset signal. The reset signal can be either the model’s
global reset, or a reset received through an optional Local reset port that
you can define on the HDL Counter block.

On each sample time, the value defined by the Step value parameter is added
to the counter, and the current value is tested for equality with the value
defined by the Count to value parameter. If the current value equals the
Count to value, the counter is reloaded with the initial value. The counter
then emits its current value at the count output.

If the counter value overflows or underflows the counter’s word size, the
counter wraps around and continues the counting sequence. The sequence
continues until reset is asserted or the model stops running.
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The condition for resetting the counter is exact equality. For some
combinations of Initial value, Step value, and Count to value, the counter
value may never equal the Count to value, or may overflow and iterate
through the counter range some number of times before reaching the Count
to value.

By default, the positive or negative direction of the count is determined by
the sign of the Step value. Optionally, you can define a Count direction
control port on the HDL Counter block.

Count Limited Mode Examples. For an 8-bit signed integer counter with
an Initial value of 0, a Step value of 2, and a Count to value of 8, the
counter output sequence is

0 2 4 6 8 0 ...

For a 3-bit unsigned integer counter with an Initial value of 0, a Step value
of 3, and a Count to value of 7, the counter output sequence is

0 3 6 1 4 7 0 3 6 1 4 7 ...

For a 3-bit unsigned integer counter with an Initial value of 0, a Step value
of 2, and a Count to value of 7, the counter output sequence never reaches
the Count to value:

0 2 4 6 0 2 4 6 ...

Control Ports
By default, the HDL Counter has no inputs. Control ports are optional inputs
that you can add to the block to:

• Reset the counter independently from the global reset logic.

• Load the counter with a value.

• Enable or disable the counter.

• Set the positive or negative direction of the counter.

The following figure shows the HDL Counter block configured with all
available control ports.
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The following characteristics apply to all control ports:

• All control ports are synchronous.

• All control ports except the load value input have Boolean data type.

• All control ports must have the same sample time.

• If any control ports exist on the block, the HDL Counter block inherits
its sample time from the ports, and the Sample time parameter on the
block dialog box is disabled.

• All signals at control ports are active-high.

Creating Control Ports for Loading and Resetting the Counter
By default, the counter is loaded (or reloaded) with the defined Initial value
at the following times:

• When the model’s global reset is asserted

• (In Count limited mode only) When the counter value equals the Count
to value

You can further control reset and load behavior with signals connected to
control ports. You can add these control ports to the block via the following
options:

Local reset port: Select this option to create a reset input port on the block.
The local reset port is labeled rst. The rst port should be connected to a
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Boolean signal. When this signal is set to 1, the counter resets to its initial
value.

Load ports: When you select this option, two input ports, labeled load and
load_val, are created on the block. The load port should be connected to a
Boolean signal. When this signal is set to 1, the counter is loaded with the
value at the load_val input. The load value must have the same data type as
the counter.

Enabling or Disabling the Counter
When you select the Count enable port option, a control port labeled enb is
created on the block. The enb port should be connected to a Boolean signal.
When this signal is set to 0, the counter is disabled and the current counter
value is held at the output. When the enb signal is set to 1, the counter
resumes operation.

Controlling the Counter Direction
By default, the negative or positive direction of the counter is determined
by the sign of the Step value. When you select the Count direction port
option, a control port labeled dir is created on the block. The dir port should
be connected to a Boolean signal. The dir signal determines the direction of
the counter as follows:

• When the dir signal is set to 1, the step value is added to the current
counter value to compute the next value.

• When the dir signal is set to 0, the step value is subtracted from the
current counter value to compute the next value.

In effect, when the signal at the dir port is 0, the counter reverses direction.
The following table summarizes the effect of the Count direction port.

Count Direction Signal
Value

Step Value Sign Actual Count
Direction

1 + (Positive) Up

1 - (Negative) Down
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Count Direction Signal
Value

Step Value Sign Actual Count
Direction

0 + (Positive) Down

0 - (Negative) Up

Priority of Control Signals
The following table defines the priority of control signals, and shows how the
counter value is set in relation to the control signals.

rst load enb dir Next Counter Value

1 – – – initial value

0 1 – – load_val value

0 0 0 – current value

0 0 1 1 current value + step value

0 0 1 0 current value - step value

Defining the Counter Data Type and Size
The HDL Counter block supports signed and unsigned integer and fixed-point
data types. Use the following parameters to set the data type:

Output data type: Select Signed or Unsigned. The default is Unsigned.

Word length: Enter the desired number of bits (including the sign bit) for
the counter.

Default: 8

Minimum: 1 if Output data type is Unsigned, 2 if Output data type is
Signed

Maximum: 125
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Fraction length: To define an integer counter, accept the default Fraction
length of 0. To define a fixed-point counter, enter the number of bits to the
right of the binary point.

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Counter type

Default: Free running

This drop-down menu selects the operation mode of the counter (see “Counter
Modes” on page 7-15). The operation modes are:
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• Free running

• Count limited

When Count limited is selected, the Count to value field is enabled.

Initial value

Default: 0

By default, the counter is loaded (or reloaded) with the defined Initial value
at the following times:

• When the model’s global reset is asserted.

• (In Count limited mode only) When the counter value equals the Count
to value. See also “Count Limited Mode” on page 7-16.

Step value

Default: 1

The Step value is an increment that is added to the counter on each sample
time. By default (i.e., in the absence of a count direction control signal) the
sign of the step value determines the count direction (see also “Controlling
the Counter Direction” on page 7-19).

Set Step value to a nonzero value that can be represented in the counter’s
data type precision without rounding. The magnitude (absolute value) of
the step value must be a number that can be represented with the counter’s
data type.

For a signed N-bit integer counter:

• The range of counter values is -(2N-1)..(2N-1 -1).

• The range of legal step values is -(2N-1-1)..(2N-1 -1) (zero is excluded).

For example, for a 4-bit signed integer counter, the counter range is [-8..7],
but the ranges of legal step values are [-7..-1] and [1..7].
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Count to value

Default: 100

The Count to value field is enabled when the Count limited counter mode
is selected. When the counter value is equal to the Count to value, the
counter resets to the Initial value and continues counting. The condition for
resetting the counter is exact equality. For some combinations of Initial
value, Step value, and Count to value, the counter value may never equal
the Count to value, or may overflow and iterate through the counter range
some number of times before reaching the Count to value (see “Count
Limited Mode” on page 7-16).

Set Count to value to a value that is not equal to the Initial value.

Local reset port

Default: cleared

Select this option to create a reset input port on the block. Only Boolean
signals should be connected to this port. The port is labeled rst. See “Creating
Control Ports for Loading and Resetting the Counter” on page 7-18.

Load ports

Default: cleared

Select this option to create load and load value input ports on the block. The
ports are labeled load and load_val, respectively. The signal applied to the
load port must be Boolean. The signal applied to the load_val port must
have the same data type as the counter. See also “Creating Control Ports for
Loading and Resetting the Counter” on page 7-18.

Count enable port

Default: cleared

Select this option to create a count enable input port on the block. Only
Boolean signals should be connected to this port. The port is labeled enb. See
also “Enabling or Disabling the Counter” on page 7-19.
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Count direction port

Default: cleared

Select this option to create a count direction input port on the block. Only
Boolean signals should be connected to this port. The port is labeled dir. See
also “Controlling the Counter Direction” on page 7-19.

Counter output data is:

Default: Unsigned

This drop-down menu selects whether the counter output is signed or
unsigned.

Word length

Default: 8

Word length is a positive integer that defines the size, in bits, of the counter.

Minimum: 1 if Output data type is Unsigned, 2 if Output data type is
Signed

Maximum: 125

Fraction length

Default: 0

To define an integer counter, accept the default Fraction length of 0. To
define a fixed-point counter, enter the number of bits to the right of the
binary point.

Default: 0

Sample time

Default: 1
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If the HDL Counter block has no input ports, the Sample time field is
enabled, and an explicit sample time must be defined. Enter the desired
sample time, or accept the default.

If the HDL Counter block has any input ports, this field is disabled, and the
block sample time is inherited from the input signals. All input signals must
have the same sample time setting. (See also “Control Ports” on page 7-17.)
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HDL FFT

In this section...

“Overview” on page 7-27

“Block Inputs and Outputs” on page 7-28

“HDL Implementation and Implementation Parameters” on page 7-30

“Parameters and Dialog Box” on page 7-30

Overview
The HDL FFT block implements a minimum resource FFT architecture.

In the current release, the HDL FFT block supports the Radix-2 with
decimation-in-time (DIT) algorithm for FFT computation. See the FFT
block reference section in the DSP System Toolbox documentation for more
information about this algorithm.

The results returned by the HDL FFT block are bit-for-bit compatible with
results returned by the DSP System Toolbox FFT block.

The operation of the HDL FFT block differs from the DSP System Toolbox FFT
block, due to the requirements of hardware realization. The HDL FFT block:

• Requires serial input

• Generates serial output

• Operates in burst I/O mode

The HDL FFT block provides handshaking signals to support these features
(see “Block Inputs and Outputs” on page 7-28).

HDL FFT Block Demo
To get started with the HDL FFT block, run the “Using the Minimum
Resource HDL FFT” demo. The demo is located in the Simulink/Simulink
HDL Coder/Signal Processing demo library.
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The demo illustrates the use of the HDL FFT block in simulation. The model
includes buffering and control logic that handles serial input and output. In
the demo, a complex source signal is stored as a series of samples in a FIFO.
Samples from the FIFO are processed serially by the HDL FFT block, which
emits a stream of scalar FFT data.

For comparison, the same source signal is also processed by the frame-based
DSP System Toolbox FFT block. The output frames from the DSP System
Toolbox FFT block are buffered into a FIF0 and compared to the output of
the HDL FFT block. Examination of the demo results shows the outputs to
be identical.

Block Inputs and Outputs
As shown in the following figure, the HDL FFT block has two input ports and
three output ports. Two of these ports are for data input and output signals.
The other ports are for control signals.

The input ports are:

• din: The input data signal. A complex signal is required.

• start: Boolean control signal. When this signal is asserted true (1), the
HDL FFT block initiates processing of a data frame.

The output ports are:

• dout: Data output signal. The Radix-2 with DIT algorithm produces output
with linear ordering.

• dvalid: Boolean control signal. The HDL FFT block asserts this signal
true (1) when a burst of valid output data is available at the dout port.
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• ready: Boolean control signal. The HDL FFT block asserts this signal true
(1) to indicate that it is ready to process a new frame.

Configuring Control Signals
For correct and efficient hardware deployment of the HDL FFT block, the
timing of the block’s input and output data streams must be considered
carefully. The following figure shows the timing relationships between the
system clock and the start, ready, and dvalid signals.

When ready is asserted, the start signal (active high) triggers the FFT
block. The high cycle period of the start signal does not affect the behavior
of the block.

One clock cycle after the start trigger, the block begins to load data and the
ready signal is deasserted. During the interval when the block is loading,
processing, and outputting data, ready is low and the start signal is ignored.

The dvalid signal is asserted high for N clock cycles (where N is the FFT
length) after processing is complete. ready is asserted again after all N-point
FFT outputs are sent out.

The expression Tcycle denotes the total number of clock cycles required by the
HDL FFT block to complete an FFT of length N. Tcycle is defined as follows:
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• Where N >8

Tcycle = 3N/2-2 + log2(N)*(N/2+3);

• Where N = 8

Tcycle = 3N/2-1 +log2(N)*(N/2+3);

Given Tcycle, you can then define the period between assertions of the
HDL FFT start signal in any way that is suitable to your application. For
example, in the “Using the Minimum Resource HDL FFT” demo, this period is
computed and assigned to the variable startLen, as follows:

if (N<=8)
startLen = (ceil(Tcycle/N)+1)*N;
else
startLen = ceil(Tcycle/N)*N;
end

In the demo model, startLen determines the period of a Pulse Generator that
drives the HDL FFT block’s start input.

In the demo, these values are computed in the model’s initialization function
(InitFcn), which is defined in the Callbacks pane of the Simulink Model
Explorer.

The HDL FFT block asserts and deasserts the ready and dvalid signals
automatically. These signals are routed to the model components that write
to and read from the HDL FFT block.

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box
The following figure shows the HDL FFT block dialog box, with all parameters
at their default settings.
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FFT Length

Default: 8

The FFT length must be a power of 2, in the range 23 .. 216.

Rounding mode

Default: Floor

The HDL FFT block supports all rounding modes of the DSP System Toolbox
FFT block. See also the FFT block reference section in the DSP System
Toolbox documentation.

Overflow mode

Default: Saturate

The HDL FFT block supports all overflow modes of the DSP System Toolbox
FFT block. See also the FFT block reference section in the DSP System
Toolbox documentation.

Sine table

Default: Same word length as input

Choose how you specify the word length of the values of the sine table. The
fraction length of the sine table values is always equal to the word length
minus one.

• When you select Same word length as input, the word length of the sine
table values match that of the input to the block.

• When you select Specify word length, you can enter the word length of
the sine table values, in bits, in the Sine table word length field. The
sine table values do not obey the Rounding mode and Overflow mode
parameters; they are always saturated and rounded to Nearest.

Product output
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Default: Same as input

Use this parameter to specify how you want to designate the product output
word and fraction lengths:

• When you select Same as input, these characteristics match those of the
input to the block.

• When you select Binary point scaling, you can enter the word length
and the fraction length of the product output, in bits, in the Product word
length and Product fraction length fields.

Accumulator

Default: Same as input

Use this parameter to specify how you want to designate the accumulator
word and fraction lengths:

When you select Same as product output, these characteristics match those
of the product output.

• When you select Same as input, these characteristics match those of the
input to the block.

• When you select Binary point scaling, you can enter the word length
and the fraction length of the accumulator, in bits, in the Accumulator
word length and Accumulator fraction length fields.

Output

Default: Same as input

Choose how you specify the output word length and fraction length:

• When you select Same as input, these characteristics match those of the
input to the block.

• When you select Binary point scaling, you can enter the word length
and the fraction length of the output, in bits, in the Output word length
and Output fraction length fields.
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Note The HDL FFT block always skips the divide-by-two operation on
butterfly outputs for fixed-point signals.
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HDL FIFO

In this section...

“Overview” on page 7-35

“Block Inputs and Outputs” on page 7-35

“HDL Implementation and Implementation Parameters” on page 7-36

“Parameters and Dialog Box” on page 7-36

Overview
The HDL FIFO block stores a sequence of input samples in a first in, first out
(FIFO) register. The HDL FIFO block closely resembles the Queue block
of the DSP System Toolbox, but with HDL-related enhancements such as
multi-rate support.

Block Inputs and Outputs
The following figure shows the HDL FIFO block with all input and output
ports enabled.

The input ports are:

• In: The data input signal.

• Push: Control signal. When this port receives a value of 1, the block pushes
the input at the In port onto the end of the FIFO register.

• Pop: Control signal. When this port receives a value of 1, the block pops the
first element off the FIFO register and holds the Out port at that value
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The output ports are:

• Out: The data output signal.

• Empty: The block asserts this signal true (1) when the FIFO register is
empty. Display of this port is optional.

• Full: The block asserts this signal true (1) to indicate that the FIFO
register is full. Display of this port is optional.

• Num: The current number of data values in the FIFO register. Display of
this port is optional.

In the event that two or more of the control input ports are triggered at the
same time step, the operations execute in the following order:

1 Pop

2 Push

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box
The following figure shows the HDL FIFO block dialog box, with all
parameters at their default settings.
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• Register size: Specify the number of entries that the FIFO register can
hold.

Default: 10

• Output sample rate output to input ratio: Inputs (In, Push) and
outputs (Out, Pop) can run at different sample rates. Enter the required
ratio of output to input rates, expressed as N or 1/N, where N is a positive
integer.

Default: 1

The Full, Empty, and Num signals always run at the faster rate.
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• Push onto full register: Response (Ignore, Error, or Warning) to a
trigger received at the Push port when the register is full.

Default: Warning

• Pop empty register: Response (Ignore, Error, or Warning) to a trigger
received at the Pop port when the register is empty.

Default: Warning

• Show empty register indicator port (Empty): Enable the Empty
output port, which is high (1) when the FIFO register is empty, and low
(0) otherwise.

• Show full register indicator port (Full): Enable the Full output port,
which is high (1) when the FIFO register is full, and low (0) otherwise.

• Show number of register entries port (Num): Enable the Num output
port, which tracks the number of entries currently on the queue.
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HDL Streaming FFT

In this section...

“Overview” on page 7-39

“HDL Streaming FFT Block Demo” on page 7-39

“Block Inputs and Outputs” on page 7-39

“Timing Description” on page 7-40

“HDL Implementation and Implementation Parameters” on page 7-44

“Parameters and Dialog Box” on page 7-44

Overview
The HDL Streaming FFT block supports the Radix-2 with
decimation-in-frequency (DIF) algorithm for FFT computation. See the FFT
block reference section in the DSP System Toolbox documentation for more
information about this algorithm.

The HDL Streaming FFT block returns results identical to results returned
by the Radix-2 DIF algorithm of the DSP System Toolbox FFT block.

HDL Streaming FFT Block Demo
To get started with the HDL Streaming FFT block, run the “OFDM Receiver
with 512-Point Streaming I/O FFT” demo. You can find this demo in the
Simulink/Simulink HDL Coder/Signal Processing demo library.

The demo implements a simple OFDM transmitter and receiver. The model
compares the results obtained from the DSP System Toolbox FFT block to
results obtained from the HDL Streaming FFT block.

Block Inputs and Outputs
As shown in the following figure, the HDL Streaming FFT block has two
input ports and three output ports. Two of these ports are for data input and
output signals. The other ports are for control signals.
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The block has the following input ports:

• din: The input data signal. The coder requires a complex fixed-point signal.

• start: Boolean control signal. When start asserts true (1), the HDL
Streaming FFT block initiates processing of a data frame.

The block has the following output ports:

• dout: Data output signal.

• dvalid: Boolean control signal. The HDL Streaming FFT block asserts
this signal true (1) when a stream of valid output data is available at the
dout port.

• ready: Boolean control signal. The HDL Streaming FFT block asserts this
signal true (1) to indicate that it is ready to process a new frame.

Timing Description
The HDL Streaming FFT block operates in one of two modes:

• Continuous data streaming mode: In this mode, the HDL Streaming FFT
block expects to receive a continuous stream of data at din. After an initial
delay, the block produces a continuous stream of data at dout.

• Non-continuous data streaming mode: In this mode, the HDL Streaming
FFT block receives non-continuous bursts of streaming data at din. After
an initial delay, the block produces non-continuous bursts of streaming
data at dout.

The behavior of the control signals determines the timing mode of the block.
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Continuous Data Streaming Timing
Assertion of the start signal (active high) triggers processing by the HDL
Streaming FFT block. To initiate continuous data stream processing, assert
the start signal in one of the following ways:

• Hold the start signal high (as shown in Continuous Data Streaming with
Start Signal Held High on page 7-41).

• Pulse the start signal every N clock cycles, where N is the FFT length (as
shown in Continuous Data Streaming With Pulsed Start Signal on page
7-42).

One clock cycle after the start trigger, the block begins to load data at din.
After the first frame of streaming data, the block starts to receive the next
frame of streaming data.

Meanwhile, the block performs the FFT calculation on the incoming data
frames and outputs the results continuously at dout. The HDL Streaming
FFT block asserts and deasserts the ready and dvalid signals automatically.
The block asserts dvalid high whenever the output data stream is valid. The
block asserts ready high to indicate that the block is ready to load a new data
frame. When ready is low, the block ignores the start signal.

The following figures illustrate continuous data streaming. Each data frame
corresponds to a stream of N input data values, where N is the FFT length.

Continuous Data Streaming with Start Signal Held High
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Note The start signal can be a single cycle pulse; it need not be held high
for the entire data frame. When processing for a frame begins, further pulses
on start do not affect processing of that frame. However, a start pulse must
occur at the beginning of each data frame.

Continuous Data Streaming With Pulsed Start Signal

Non-Continuous Data Streaming Timing
In this mode, the HDL Streaming FFT block receives continuous bursts
of streaming data at din. After an initial delay, the block produces
non-continuous bursts of streaming data at dout. Breaks occur between data
frames when the following condition exist:

• The start signal does not assert every N clock cycles (where N is the FFT
length)

• The start signal is not continuously held high.

Non-continuous data streaming mode allows you more flexibility in
determining the intervals between input data streams.
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Initial Delay
The initial delay of the HDL Streaming FFT block is the interval between the
following times:

• The time the block begins to receive the first frame of input data

• The time the block asserts dvalid and produces the first valid output data.

The initial delay represents the time the block uses to load a data frame,
calculate the FFT, and output the beginning of the first output frame. The
following figure illustrates the initial delay.
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If you select the block option Display computed intitial delay on mask,
the block icon displays the intial delay. The display represents the delay time
as Z-n, where n is the delay time in samples.

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box
The following figure shows the HDL Streaming FFT block dialog box, with all
parameters at their default settings.
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FFT Length

Default: 1024

The FFT length must be a power of 2, in the range 23 to 216.

Rounding mode

Default: Floor

The HDL Streaming FFT block supports all rounding modes of the DSP
System Toolbox FFT block. See also the FFT block reference section in the
DSP System Toolbox documentation.

Overflow mode

Default: Wrap

The HDL Streaming FFT block supports all overflow modes of the DSP
System Toolbox FFT block. See also the FFT block reference section in the
DSP System Toolbox documentation.

Sine table

Default: Same word length as input

Choose how you specify the word length of the values of the sine table. The
fraction length of the sine table values is always equal to the word length
minus one.

• When you select Same word length as input, the word lengths of the
sine table values match the word lengths of the block inputs.

• When you select Specify word length, you can enter the word length of
the sine table values, in bits, in the Sine table word length field. The
sine table values do not obey the Rounding mode and Overflow mode
parameters. They always saturate and always round to Nearest.

Product output
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Default: Same as input

Use this parameter to specify how you want to designate the product output
word and fraction lengths:

• When you select Same as input, these characteristics match the
characteristics of the input to the block.

• Binary point scaling: Enter the word length and the fraction length
of the product output, in bits, in the Product word length and Product
fraction length fields.

Accumulator

Default: Same as input

Use this parameter to specify how you want to designate the accumulator
word and fraction lengths:

When you select Same as product output, these characteristics match the
characteristics of the product output.

• When you select Same as input, these characteristics match the
characteristics of the input to the block.

• Binary point scaling: Enter the word length and the fraction length
of the accumulator, in bits, in the Accumulator word length and
Accumulator fraction length fields.

Output

Default: Same as input

Choose how you specify the output word length and fraction length:

• Same as input: these characteristics match the characteristics of the
input to the block.

• Binary point scaling: lets you enter the word length and fraction length
of the output, in bits, in the Output word length and Output fraction
length fields.
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Output in bit-reversed order

Default: Off

• On: The output data stream is in bit-reversed order.

• Off: The output data stream is in natural order.

Display computed intitial delay on mask

Default: Off

• On: The block icon displays the intial delay as Z-n, where n is the delay
time in samples.

• Off: The block icon does not display the intial delay.

Note Sine table, Product output, Accumulator, and Output do not
support:

• Inherit via internal rule

• Slope and bias scaling
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Bitwise Operators

In this section...

“Overview of Bitwise Operator Blocks” on page 7-49

“Bit Concat” on page 7-51

“Bit Reduce” on page 7-53

“Bit Rotate” on page 7-55

“Bit Shift” on page 7-57

“Bit Slice” on page 7-59

Overview of Bitwise Operator Blocks
The Bitwise Operator sublibrary provides commonly used operations on bits
and bit fields.

All Bitwise Operator blocks support:

• Scalar and vector inputs

• Fixed-point, integer (signed or unsigned), and Boolean data types

• A maximum word size of 128 bits

Bitwise Operator blocks do not currently support:

• Double, single, or complex data types

• Matrix inputs

To open the Bitwise Operators sublibrary, double-click its icon

in the hdldemolib window. Alternatively, you can open the
Bitwise Operators sublibrary directly by typing the following command at
the MATLAB prompt:

7-49



7 The hdldemolib Block Library

hdldemolib_bitops

The following figure shows the Bitwise Operators sublibrary.
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Bit Concat

Description
The Bit Concat block concatenates up to 128 input words into a single output.
The input port labeled L designates the lowest-order input word; the port
labeled H designates the highest-order input word. The right-left ordering of
words in the output follows the low-high ordering of input signals.

The operation of the block depends on the number and dimensions of the
inputs, as follows:

• Single input: The input can be a scalar or a vector. When the input is a
vector, the coder concatenates all individual vector elements together.

• Two inputs: Inputs can be any combination of scalar and vector. When
one input is scalar and the other is a vector, the coder performs scalar
expansion. Each vector element is concatenated with the scalar, and the
output has the same dimension as the vector. When both inputs are
vectors, they must have the same size.

• Three or more inputs (up to a maximum of 128 inputs): Inputs must be
uniformly scalar or vector. All vector inputs must have the same size.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

• Output: Unsigned fixed-point or integer (Maximum concatenated output
word size: 128 bits)

HDL Implementation and Implementation Parameters
Implementation: default
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Implementation Parameters: InputPipeline, OutputPipeline

Parameters and Dialog Box

Number of Inputs: Enter an integer specifying the number of input signals.
The number of input ports displayed on the block updates when Number of
Inputs changes.

• Default: 2.

• Minimum: 1

• Maximum: 128

Caution Make sure that the Number of Inputs is equal to the number of
signals you connect to the block. If unconnected inputs are present on the
block, an error will occur at code generation time.
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Bit Reduce

Description
The Bit Reduce block performs a selected bit reduction operation (AND, OR,
or XOR) on all the bits of the input signal, reducing it to a single-bit result.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

• Output: always ufix1

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Reduction Mode

Default: AND

Specifies the reduction operation, as follows:

• AND: Perform a bitwise AND reduction of the input signal.

• OR: Perform a bitwise OR reduction of the input signal.

• XOR: Perform a bitwise XOR reduction of the input signal.
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Bit Rotate

Description
The Bit Rotate block rotates the input signal left or right by a specified
number of bit positions.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

- Minimum word size: 2 bits

- Maximum word size: 128 bits

• Output: Has the same data type as the input signal

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Rotate Mode: Specifies direction of rotation, either left or right.

Default: Rotate Left

Rotate Length: Specifies the number of bits to be rotated. Rotate Length
must be greater than or equal to zero.

Default: 0
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Bit Shift

Description
The Bit Shift block performs a logical or arithmetic shift on the input signal.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

- Minimum word size: 2 bits

- Maximum word size: 128 bits

• Output: Has the same data type as the input signal

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

Shift Mode

Default: Shift Left Logical

Specifies the type and direction of shift, as follows:

• Shift Left Logical

• Shift Right Logical

• Shift Right Arithmetic

Shift Length

Default: 0

Specifies the number of bits to be shifted. Shift Length must be greater
than or equal to zero.
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Bit Slice

Description
The Bit Slice block returns a field of consecutive bits from the input signal.
The lower and upper boundaries of the bit field are specified by zero-based
indices entered in the LSB Position andMSB Position parameters.

Data Type Support

• Input: Fixed-point, integer (signed or unsigned), Boolean

• Output: unsigned fixed-point or unsigned integer

HDL Implementation and Implementation Parameters
Implementation: default

Implementation Parameters: InputPipeline, OutputPipeline
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Parameters and Dialog Box

MSB Position

Default: 7

Specifies the bit position (zero-based) of the most significant bit (MSB) of the
field to be extracted.

For an input word size WS, LSB Position andMSB Position should satisfy
the following constraints:

WS > MSB Position >= LSB Position >= 0;

The word length of the output is computed as (MSB Position - LSB
Position) + 1.

LSB Position

Default: 0
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Specifies the bit position (zero-based) of the least significant bit (LSB) of the
field to be extracted.
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Streaming

In this section...

“Streaming Overview” on page 8-2

“Streaming Example” on page 8-4

“Requirements and Limitations for Streaming” on page 8-13

Streaming Overview
By default, the coder generates fully parallel implementations for vector
computations. For example, the coder realizes a vector sum as a number of
adders, executing in parallel during a single clock cycle. This technique can
consume a large number of hardware resources.

Streaming is an optimization in which the coder transforms a vector data
path to a scalar data path (or to several smaller-sized vector data paths) that
executes at a faster rate. The generated code saves chip area by multiplexing
the data over a smaller number of hardware resources. In effect, streaming
allows some number of computations to share a hardware resource.

By specifying a streaming factor for a subsystem, you can control the degree
to which such resources are shared within that subsystem. Higher streaming
values imply both a higher degree of sharing, and a higher clock rate. Where
the ratio of streaming factor (Nst) to subsystem data path width (Vdim) is 1:1,
the coder implements an entirely scalar data path. A streaming factor of 0
(the default) produces a fully parallel implementation (i.e., with no sharing)
for vector computations. Depending on the width of the data path, you can
also specify streaming factors between these extrema.

If you know the maximal vector dimensions and the sample rate for a
subsystem, you can compute the possible streaming factors and resulting
sample rates for the subsystem. However, even if the requested streaming
factor is mathematically possible, the subsystem must meet all other criteria
for streaming. See “Requirements and Limitations for Streaming” on page
8-13 for details.

You apply streaming at the subsystem level. Specify the streaming factor
by setting the subsystem HDL parameter StreamingFactor. You can set
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StreamingFactor in the HDL Properties dialog for a subsystem, as shown in
the following figure.

Alternatively, you can set StreamingFactor using thehdlset_param function,
as in the following example.

hdlset_param('mpd/Controller','StreamingFactor', 24);

To implement a requested streaming factor, the coder generates a multirate
DUT that is numerically bit-true to the original model. This secondary DUT
allows you to model the streaming optimization. The coder also generates
HDL code from the secondary DUT. Since the structure of the secondary
model is often substantially different from the original model, the coder
creates a validation model that contains:

• The optimized (streaming implementation) DUT

• The original DU

If there is any latency between the streaming DUT and the original DUT,
the coder inserts a compensating delay at the output of the original DUT.
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• The original inputs to the DUT (i.e., test bench), routed to both versions
of the DUT

• Logic for comparison and viewing of the DUT outputs

Using the validation model, you can verify that the output of the optimized
DUT is bit-true to the results produced by the original DUT.

Streaming Example
This example uses the mpd demo model to illustrate:

• Specification of a streaming factor for a subsystem

• Generation of HDL code and a validation model for the subsystem.

The following figure shows the mpd model. mpd is a single-rate model that
drives the Controller subsystem with a vector signal of width 24.

The following figure shows the Controller subsystem, which is the DUT
in this example. All data paths in the DUT are 24-element vectors. In
simulation, the block performs three vector multiplications and two vector
additions per time step. A default (fully parallel) HDL implementation
of this subsystem would require 24*3 (=72) multipliers and 24*2 (=48)
adders/subtractors.
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By generating HDL code and an HTML Resource Usage Report, you can
determine how many multipliers and adders are generated from this DUT in
the default case. To do so, type the following commands:

hdlset_param('mpd/Controller','StreamingFactor', 0);

makehdl('mpd/Controller','ResourceReport','on');

The following figure shows the Resource Utilization Report for the Controller
subsystem. The report shows that the coder generated the expected number
of adders/subtractors and multipliers.
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If you choose an appropriate StreamingFactor for the DUT, you can achieve
a drastic reduction in the number of multipliers and adders/subtractors
generated. The following commands set StreamingFactor to the largest
possible value for this subsystem and then generate VHDL code and a
Resource Utilization Report.
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hdlset_param('mpd/Controller','StreamingFactor', 24);

makehdl('mpd/Controller','ResourceReport','on');

During code generation, the coder reports latency in the generated model. It
also reports the generation of the validation model.

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Some latency changes occurred in the DuT. Each output port experiences these additional delays

### Output port 0: 1 cycles

### Generating new validation model: gm_mpd0_vnl.mdl

### Validation Model Generation Complete.

### Begin VHDL Code Generation

### Working on mpd/Controller/err_d_serializercomp as hdlsrc\err_d_serializercomp.vhd

### Working on mpd/Controller/Saturation_out1_serialcomp as hdlsrc\Saturation_out1_serialcomp.vhd

### Working on mpd/Controller/kconst_serializercomp as hdlsrc\kconst_serializercomp.vhd

### Working on Controller_tc as hdlsrc\Controller_tc.vhd

### Working on mpd/Controller as hdlsrc\Controller.vhd

### Generating package file hdlsrc\Controller_pkg.vhd

### Generating HTML files for code generation report in C:\Work\hdlsrc\html\mpd directory ...

### HDL Code Generation Complete.

After code generation completes, you can view the results of the
StreamingFactor optimization. Using the Resource Utilization Report, inside
the HDL Code Generation Report, you can see that only 3 multipliers and 2
adders were generated for the Controller subsystem.
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The coder also produces a Streaming and Sharing report showing:

• The StreamingFactor that was specified

• All other usable StreamingFactor values for this subsystem

• Latency (delays) that were introduced in the generated model

• A hyperlink to the validation model

8-9



8 Streaming, Resource Sharing, and Delay Balancing

8-10



Streaming

The Validation Model
The following figure shows the validation model generated for the Controller
subsystem.

The lower section of the validation model contains a copy of the original DUT
(Controller_vhd). This single-rate subsystem runs at its original rate.

The upper section of the validation model contains the streaming version of
the DUT (Controller). Internally, this subsystem runs at a different rate
than the original DUT.

The following figure shows the interior of the Controller subsystem.
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Inspection of the Controller subsystem shows that it is a multi-rate
subsystem, having two rates that operate as follows:

• Inputs and outputs run at the same rate as the exterior model.

• Dual-rate Serializer blocks receive vector data at the original rate and
output a stream of scalar values at the higher (24x) rate.

• Interior blocks between Serializers and Deserializer run at the higher rate.

• The Deserializer block receives scalar values at the higher rate and buffers
values into a 24-element output vector running at the original rate.

The Compare subsystem (see following figure) receives and compares outputs
from the Controller and Controller_vnl subsystems. To compensate for
the latency of the Controller subsystem (reported during code generation),
input from the Controller_vnl subsystem is delayed by one clock cycle. Any
discrepancy between the outputs of the two subsystems triggers an assertion.

To verify that a generated model with streaming is bit-true to its original
counterpart in a validation model:

1 Open the Compare subsystem.

2 Double click the button labeled Double click to turn off/on all scopes.

3 Run the model.

4 Observe the compare:Out1 scope. The error signal display should show a
line through zero, indicating that all data comparisons tested for equality.
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Requirements and Limitations for Streaming
This section describes the criteria for streaming that subsystems must meet.

Blocks That Support Streaming
The coder supports a large number of blocks for streaming. As a best practice,
run the checkhdl function before generating streaming code for a subsystem.
checkhdl reports any blocks in your subsystem that are incompatible with
streaming. If you initiate streaming code generation for a subsystem that
contains any incompatible blocks, the streaming request will fail.

Computing Streaming Factors and Resultant Sample Times
In a given subsystem, if Nst is the streaming factor, and Vdim is the maximum
vector dimension, then the data path of the resultant streamed subsystem
can be either of the following:

• Of width Vstream = (Vdim/Nst)

• Scalar

If the original subsystem operated with a sample time S, then the streamed
subsystem operates with a sample time of S/Nst.
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Checks and Requirements for Streaming Subsystems
Before applying streaming, the coder performs a series of checks on the
subsystems to be streamed. You can stream a subsystem if it meets all the
following criteria:

• The streaming factor Nst must be a perfect divisor of the vector width Vdim.

• The subsystem must be a single-rate subsystem that contains no rate
changes or rate transitions.

Because of this requirement, do not specify HDL implementations that are
inherently multirate for any block within the subsystem. For example,
using the Cascade implementation (for the Sum, Product, MinMax, and
other blocks) is not allowed within a streamed subsystem.

• All vector data paths in the subsystem must have the same widths.

• The subsystem must not contain any nested subsystems.

• All blocks within the subsystem must support streaming. The coder
supports a large number of blocks for streaming.As a best practice, run
checkhdl before generating streaming code for a subsystem. checkhdl
reports any blocks in your subsystem that are incompatible with streaming.
If you initiate streaming code generation for a subsystem that contains any
incompatible blocks, the streaming request will fail.

If the requested streaming factor cannot be implemented, the coder generates
nonstreaming code. It is good practice to generate an Optimization Report.
The Streaming and Sharing page of the report (see the following figure)
provides information about conditions that prevent streaming.
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Resource Sharing

In this section...

“Overview” on page 8-16

“Mutually Parallel vs. Data-Dependent Resource Sharing” on page 8-19

“Resource Sharing with Atomic Subsystems” on page 8-30

“Resource Sharing Information in Reports” on page 8-35

“Limitations for Resource Sharing” on page 8-35

Overview
Resource sharing is an optimization in which the coder identifies multiple
functionally equivalent resources in the model and shares a single resource
among them to perform their operations. By using this technique, you can
reduce chip area substantially. For example, the generated code may use only
one multiplier to perform the operations of several identically configured
multipliers from the original model. The coder achieves this by multiplexing
the shared data over the shared resource.

The coder applies sharing at the subsystem level. By specifying a sharing
factor (a nonzero positive integer) for a subsystem, you define the number of
blocks that can share a single resource. Higher sharing values imply both a
higher number of blocks, and a higher clock rate.

A sharing factor of 0 (the default) implements the subsystem with no sharing.

You specify the sharing factor by setting the subsystem HDL parameter
SharingFactor. You can set SharingFactor in the HDL Properties dialog
box for a subsystem, as shown in the following figure.
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Alternatively, you can set SharingFactor using the hdlset_param function,
as in the following example.

hdlset_param('mdimcheck/Channel','SharingFactor', 3);

Sharable Blocks
Sometimes, a nonzero sharing factor Nsh for a subsystem can occur. In such
cases, the coder tries to identify and shareNsh functionally identical instances
of the following types of blocks:

• Gain (default implementation only)

• Product

• Atomic subsystem (single-rate only)

Within these block types, a set of blocks is considered to be functionally
identical for the purposes of resource sharing as follows:

• Product blocks: Must have equivalent input and output data types and
rounding and saturation modes.
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• Gain blocks: Must have equivalent input and output data types and
rounding and saturation modes. Gain constants must be of the same type
but can have different values.

• Atomic subsystems: Must have identical mask and block parameters.

• Gain and Product blocks are considered functionally identical if they have
equivalent input and output data types and rounding/saturation modes. In
determining type equivalence, the Gain constant is considered the second
input of the product.

To determine whether or not your model is compatible with sharing:

1 Run checkhdl before generating code, and eliminate any general
compatibility problems.

2 Select Generate optimization report in the Code Generation Report
panel of the HDL Code Generation pane of the Configuration Parameters
dialog box.

3 Set the sharing factor for the DUT and generate code.

4 Inspect the Optimization Report after code generation completes. The
report shows any incompatible blocks or other conditions that can cause
a resource sharing request to fail.

5 If the Optimization Report shows any such problems, correct them and
repeat the process.

See also “Limitations for Resource Sharing” on page 8-35 .

The Validation Model
In order to implement a requested sharing factor, the coder generates a
multirate DUT that is numerically bit-true to the original model. This
secondary DUT allows you to model the sharing optimization. The coder
also generates HDL code from the secondary DUT. Since the structure of the
secondary model is often substantially different from the original model, the
coder creates a validation model that contains:

• The optimized (sharing implementation) DUT
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• The original DU

If there is any latency between the sharing DUT and the original DUT, the
coder inserts compensating delays at the output (and at other points as
required) of the original DUT

• The original inputs to the DUT (i.e., test bench), routed to both versions
of the DUT

• Logic for comparison and viewing of the DUT outputs

Using the validation model, you can verify that the output of the optimized
DUT is bit-true to the results produced by the original DUT.

Mutually Parallel vs. Data-Dependent Resource
Sharing
Let S be a set of functionally equivalent resources that the coder has identified
as candidates for sharing. The coder defines two types of sharing, based
on the topological relationships between the resources in S. These types of
sharing are:

• Mutually parallel: If there exists no connecting path between any two
resources in S, the resources are in a mutually parallel relationship. For
example, the Product blocks in the next figure are mutually parallel.
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Mutually parallel resource sharing reduces to a case of streaming, as
illustrated in the next section, “Mutually Parallel Sharing Example” on
page 8-21,

• Data-dependent: If there exists at least one pair of blocks in S that have
a connecting path, the resources are in a data-dependent relationship. In
the following figure, there is a data dependency between the Gain1 and
Gain2 blocks.
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Depending on the type of sharing, the coder restructures the model for code
generation in different ways. The coder gives priority to mutually parallel
sharing. That is, for a requested sharing factor Nsh, the coder first tries to
identify a set of Nsh blocks that meet all criteria for mutually parallel sharing.
If no such blocks are found, the coder then looks for Nsh blocks that meet all
criteria for data dependent sharing.

The next sections give examples that illustrate how the coder handles each of
these cases.

Mutually Parallel Sharing Example
This example examines the results of mutually parallel resource sharing
for a set of multipliers.

The following model contains a Channel subsystem, which functions as the
DUT. The DUT multiplies four pairs of inputs and then adds their products.
The four Product blocks in the DUT are in a mutually parallel relationship.
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Use the following commands to set SharingFactor to 4 for the subsystem.
Then, generate VHDL code and a validation model for the DUT. Also generate
resource and optimizations reports.

hdlset_param('ex_dimcheck/Channel','SharingFactor',4);

makehdl('ex_dimcheck/Channel', 'ResourceReport','on', 'OptimizationReport','on');

During code generation, the coder reports that the generated code requires
a clock rate increase by a factor of 4. It also reports a 1-cycle latency in the
generated model.

### Generating HDL for 'ex_dimcheck/Channel'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Some latency changes occurred in the DuT. Each output port experiences these additional delays
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### Output port 0: 1 cycles

### Generating new validation model: gm_ex_dimcheck1_vnl.mdl

### Validation Model Generation Complete.

### Begin VHDL Code Generation

### MESSAGE: The design requires 4 times faster clock with respect to the base rate = 0.2.

### Working on ex_dimcheck/Channel/mux1_serializer as hdlsrc\mux1_serializer.vhd

### Working on ex_dimcheck/Channel/Product10_deserializer as hdlsrc\Product10_deserializer.vhd

### Working on Channel_tc as hdlsrc\Channel_tc.vhd

### Working on ex_dimcheck/Channel as hdlsrc\Channel.vhd

### Generating package file hdlsrc\Channel_pkg.vhd

### Generating HTML files for code generation report in H:\hdlsrc\html\ex_dimcheck directory ...

### HDL Code Generation Complete.

The following figure shows the interior of the DUT for the validation model.
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The DUT in the validation model is multirate. It uses two Mux blocks to
combine the original eight inputs into two 4-element vector signals. At this
point, the coder implements the vector multiplication by streaming. The
vectors are serialized and streamed to the inputs of a single Product block.
The streamed Product outputs are then converted back to scalars by a Demux
block before the final addition.

Given the sample time S of the original DUT and the SharingFactor Nsh, the
shared resource (in this example the Product block ) operates with a sample
time of S/Nsh.

The coder implements such mutually parallel sharing requests by streaming.
In this case, four multipliers have been reduced to one. The Resource
Utilization Report (shown in the next figure ) confirms the area savings.
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Data Dependent Sharing Example
This example examines the results of resource sharing for a subsystem in
which a data dependency exists.

The next figure below shows mrsbasic.mdl and its Channel subsystem, which
functions as the DUT. In the DUT, there is a data dependency between the
Gain1 and Gain2 blocks.
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Use the following commands to set SharingFactor to 3 for the subsystem.
Then, generate VHDL code and a validation model for the DUT. Also generate
resource and optimizations reports.

hdlset_param('mrsbasic/Subsystem','SharingFactor',3);

makehdl('mrsbasic/Subsystem','ResourceReport','on', 'OptimizationReport','on')

During code generation, the coder reports that the generated code requires
a clock rate increase by a factor of 3. It also reports a 2-cycle latency in the
generated model.

### Generating HDL for 'mrsbasic/Subsystem'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Some latency changes occurred in the DuT. Each output port experiences these additional delays

### Output port 0: 2 cycles

### Generating new validation model: gm_mrsbasic0_vnl.mdl

### Validation Model Generation Complete.

### Begin VHDL Code Generation

### MESSAGE: The design requires 3 times faster clock with respect to the base rate = 0.1.

### Working on shareSS as hdlsrc\shareSS.vhd

### Working on Subsystem_tc as hdlsrc\Subsystem_tc.vhd

### Working on mrsbasic/Subsystem as hdlsrc\Subsystem.vhd

### Generating package file hdlsrc\Subsystem_pkg.vhd

### Generating HTML files for code generation report in C:\Work\hdlsrc\html\mrsbasic directory ...

### HDL Code Generation Complete.

The Resource Utilization Report shows that the generated code requires one
multiplier. Because this multiplier performs the operations of the three
original multipliers, it runs three times faster than the original model’s base
rate.
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The following figure shows the multirate DUT in the validation model. For
a DUT with data dependencies, the coder extracts the shared resources to a
separate subsystem, sharedSS.

8-29



8 Streaming, Resource Sharing, and Delay Balancing

The following figure shows the interior of sharedSS. This subsystem contains
the shared Gain block (Gain3) and runs at three times the base rate of the
original model.

Resource Sharing with Atomic Subsystems
This example illustrates a typical two channel audio filtering application,
and shows how you can achieve a more efficient implementation by sharing
atomic subsystems.

The model in the following figure processes the left and right audio input
signals through the Audio filter subsystem (the DUT).
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Inside the DUT (see the following figure), identical copies of a filter subsystem
process the signals. These subsystems are in a mutually parallel relationship.

The Treat as atomic unit subsystem parameter is selected for each filter
system.

If code is generated for the DUT with a sharing factor of 0 (the default), the
coder detects the presence of two identical subsystems and reports them on
the Resource Utilization Report (see following figure). This report indicates
an opportunity to save resources by sharing the subsystems.
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The following commands set a sharing factor of 2 for the DUT, and generate
VHDL code, a validation model, and resource and optimization reports.

hdlset_param('audiofiltering/Audio filter','SharingFactor',2)

makehdl('audiofiltering/Audio filter','ResourceReport','on', 'OptimizationReport','on')

As code generation proceeds, the coder reports a 1-cycle latency change in the
DUT. It also reports that the clock speed required for the generated code is
twice the original clock rate.

### Generating HDL for 'audiofiltering/Audio filter'
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### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Some latency changes occurred in the DuT. Each output port experiences these additional delays

### Output port 0: 1 cycles

### Output port 1: 1 cycles

### Generating new validation model: gm_audiofiltering4_vnl.mdl

### Validation Model Generation Complete.

### Begin VHDL Code Generation

### MESSAGE: The design requires 2 times faster clock with respect to the base rate = 0.0001.

...

The Resource Utilization Report shows that the validation model requires 3
multipliers and 2 adders/subtractors. The use of these resources is reduced by
a factor of Nsh relative to the original model.
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Because the filters in the original DUT were mutually parallel, the DUT
in the validation model (see the following figure) is a multi-rate, streaming
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implementation of the original DUT. It uses two Mux blocks to combine the
inputs into a 2-element vector signal. The vector signal is serialized and
streamed to the inputs of a single Subsystem block. The streamed Subsystem
output is then converted back to scalars before the final outputs.

The interior of the generated DUT (not shown) is identical to the original
filter_left subsystem, except for the insertion of 2 cycles of delay.

Resource Sharing Information in Reports
If you generate a code generation report, the report includes the following
information (for each subsystem that implements sharing):

• Success or failure: If the report notes failure, it identifies which criterion
was violated. If the report notes success, then it provides a list of resource
usage changes caused by sharing.

• Recommendations on other SharingFactor values that you could try for
the subsystem

• Latency changes

Limitations for Resource Sharing
The following limitations apply to resource sharing:

• You can share blocks within a feedback loop, provided that every such
block has at least one delay (Unit Delay or Integer Delay) on every one of
its output ports.

To construct a sharable feedback loop, connect a Unit Delay or Integer
Delay to the output of all Gain and Product blocks within the loop.

• The following limitations apply to atomic subsystems:
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- Atomic subsystems used in mutually parallel sharing can contain only
the following state elements:

• Unit Delay

• Integer Delay

• The set of blocks selected for data-dependent sharing must be single-rate.
Also, this set of blocks must not contain any subsystem that is not a
sharing candidate.
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Delay Balancing
The coder supports several optimizations, block implementations, and options
that introduce discrete delays into the model, with the goal of more efficient
hardware usage or achieving higher clock rates. Examples include:

• Optimizations: Optimizations such as output pipelining, streaming, or
resource sharing can introduce delays.

• Cascading: Some blocks support cascade implementations, which introduce
a cycle of delay in the generated code.

• Block implementations: Some block implementations inherently introduce
delays in the generated code. “Delay Balancing Example” on page 8-38
discusses one such implementation.

A common problem is that optimizations can introduce delays along the
critical path in a model, but equivalent delays are not introduced on other,
parallel signal paths. This situation can introduce differences in numerics
between the original model and the generated model and HDL code. Manual
insertion of compensating delays along the other paths is possible, but is error
prone and does not scale well to very large models with many signal paths or
multiple sample rates.

To help you solve this problem, the coder supports delay balancing. When you
enable delay balancing, if the coder detects introduction of new delays along
one path, it ensures that matching delays are inserted on all other paths.
When delay balancing is enabled, the coder guarantees that the generated
model is functionally equivalent to the original model.

Properties Supporting Delay Balancing
The following makehdl properties support delay balancing:

• BalanceDelays: To enable delay balancing, set BalanceDelays to 'on'.

• GenerateValidationModel: Set GenerateValidationModel to 'on'
to view a validation model that highlights generated delays and other
differences between your original model and the generated model. A
validation model is particularly useful or for observing the effect of delay
balancing. The validation model contains:
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- The delay balanced DUT

- The original DU

- The original inputs to the DUT (i.e., test bench), routed to both versions
of the DUT

- Logic for comparison and viewing of the DUT outputs

Using the validation model, you can verify that the output of the optimized
DUT is bit-true to the results produced by the original DUT.

The following command enables both delay balancing and generation of a
validation model.

makehdl('uc_rsqrt/Subsystem','BalanceDelays','on','GenerateValidationModel','on')

Delay Balancing Example
This example shows a simple case where the VHDL implementation of a block
introduces delays that cause a numerical mismatch between the original DUT
and the generated model and HDL code. The example then demonstrates how
to use delay balancing to correct the mismatch.

The following figure shows the DUT for theuc_rsqrt model. The DUT is a
simple multirate subsystem that includes a Reciprocal Square Root block
(Sqrt). A Rate Transition block downsamples the output signal to a lower
sample rate.
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After generating HDL code, examination of the generated model shows that
the coder has implemented the Sqrt block as a subsystem, as shown in the
following figure.

The following figure shows that the generated Sqrt subsystem introduces a
total of 5 cycles of delay. (This behavior is inherent to the Reciprocal Square
Root block implementation.) These delays map to registers in the generated
HDL code.

The scope in the following figure shows the results of a comparison run
between the original and generated models. The scope displays the following
signals, in descending order:

• The outputs from the original model

• The outputs from the generated model

• The difference between the two
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The difference is nonzero, indicating a numerical mismatch between the
original and generated models.

Two factors cause this discrepancy:

• The input signal branches into two parallel paths (to the Sqrt and product
blocks) but only the branch to the Sqrt block introduces delays.

• The downsampling caused by the rate transition drops samples.

Both of these problems could be solved by manually inserting delays at
appropriate points in the generated model. However, using the coder’s delay
balancing capability produces more consistent and reliable results.

The following command generates HDL code with delay balancing, and also
generates a validation model.

makehdl('uc_rsqrt/Subsystem','BalanceDelays','on','GenerateValidationModel','on')

The following figure shows the validation model. The lower subsystem is
identical to the original DUT. The upper subsystem represents the HDL
implementation of the DUT.
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The upper subsystem (shown in the following figure ) represents the HDL
implementation of the DUT. To balance the 5-cycle delay produced by the
Sqrt subsystem, the coder has inserted a 5-cycle delay on the parallel data
path. The coder has also inserted a cycle of delay before the Rate Transition
to offset the effect of downsampling.

Unsupported Blocks and Block Implementations
The following blocks do not support delay balancing:

• Assertion

8-41



8 Streaming, Resource Sharing, and Delay Balancing

• Biquad Filter

• CIC Decimation

• CIC Interpolation

• Cosimulation

• Counter Free-Running

• Data Type Duplicate

• Decrement To Zero

• Digital Filter

• DiscreteFir

• EnablePort

• FIR Decimation

• FIR Interpolation

• FrameConversion

• From

• Ground

• HDL Counter

• HDL FFT

• LMS Filter

• Model Reference

• NCO

• Sine Wave

• To VCD File

• TriggerPort

• Unit Delay Resettable

• Unit Delay Enabled Resettable

The following block implementations do not currently support delay balancing:
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• hdldefaults.AlteraDSPBuilderBlackBox

• hdldefaults.ConstantSpecialHDLEmission

• hdldefaults.DiscreteTimeIntegrator

• hdldefaults.NoHDL

• hdldefaults.SubsystemBlackBoxHDLInstantiation

• hdldefaults.XilinxBlackBoxHDLInstantiation
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Overview of Generated Models
In some circumstances, significant differences in behavior can arise between
a Simulink model and the HDL code generated from that model. Such
differences fall into two categories:

• Numerics: differences in intermediate and/or final computations. For
example, a selected block implementation may restructure arithmetic
operations to optimize for speed (see “Example: Numeric Differences” on
page 9-4). Where such numeric differences exist, the HDL code is no longer
bit-true to the model.

• Latency: insertion of delays of one or more clock cycles at certain points
in the HDL code. Some block implementations that optimize for area can
introduce these delays. Where such latency exists, the timing of the HDL
code is no longer cycle-accurate with respect to the model.

To help you evaluate such cases, the coder creates a generated model that is
bit-true and cycle-accurate with respect to the generated HDL code. The
generated model lets you

• Run simulations that accurately reflect the behavior of the generated HDL
code.

• Create test benches based on the generated model, rather than the original
model.

• Visually detect (by color highlighting of affected subsystems) all differences
between the original and generated models.

The coder always creates a generated model as part of the code generation
process, and always generates test benches based on the generated model,
rather than the original model. In cases where no latency or numeric
differences occur, you can disregard the generated model except when
generating test benches.

The coder also provides options that let you

• Suppress display of the generated model.

• Create and display only the generated model, with code generation
suppressed.
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• Specify the color highlighting of differences between the original and
generated models.

• Specify a name or prefix for the generated model.

“Defaults and Options for Generated Models” on page 9-10 describes these
options.
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Example: Numeric Differences
This example first selects a speed-optimized Sum block implementation for
simple model that computes a vector sum. It then examines a generated
model and locates the numeric changes introduced by the optimization.

The model, simplevectorsum_tree, consists of a subsystem, vsum, driven by
a vector input of width 10, with a scalar output. The following figure shows
the root level of the model.

The device under test is the vsum subsystem, shown in the following figure.
The subsystem contains a Sum block, configured for vector summation.

The model is configured to use the Tree implementation when generating
HDL code for the Sum block within the vsum subsystem. This implementation,
optimized for minimal latency, generates a tree-shaped structure of adders
for the Sum block.

To select a nondefault implementation for an individual block:
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1 Right-click the block and select HDL Code Generation > HDL Block
Properties .

2 In the HDL Properties dialog box, select the desired implementation from
the Architecture menu.

3 Click Apply and close the dialog box.

After code generation, the coder displays the generated model,
gm_simplevectorsum_tree.

At the root level, this model appears identical to the original model, except
that the vsum subsystem has been highlighted in cyan. This highlighting
indicates that the subsystem differs in some respect from the vsum subsystem
of the original model.

The following figure shows the vsum subsystem in the generated model.
Observe that the Sum block is now implemented as a subsystem, which is
also highlighted.

The following figure shows the internal structure of the Sum subsystem.
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The generated model implements the vector sum as a tree of adders (Sum
blocks). The vector input signal is demultiplexed and connected, as five
pairs of operands, to the five leftmost adders. The widths of the adder
outputs increase from left to right, as required to avoid overflow in computing
intermediate results.
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Example: Latency
This example uses the simplevectorsum_cascade model. This model
is identical to the model in the previous example (“Example: Numeric
Differences” on page 9-4), except that it uses a cascaded implementation for
the Sum block. This implementation introduces both latency and numeric
differences.

The following figure shows the HDL Properties dialog box for a Sum block,
with the Cascade implementation selected. This implementation generates a
cascade of adders for the Sum block.

In the generated code, partial sums are computed by adders arranged in a
cascade structure. Each adder computes a partial sum by demultiplexing and
adding several inputs in succession. These computation take several clock
cycles. On each cycle, an addition is performed; the result is then added to
the next input.

To complete all computations within one sample period, the system master
clock runs faster than the nominal sample rate of the system. A latency of one
clock cycle (in the case of this model) is required to transmit the final result
to the output. The inputs cannot change until all computations have been
performed and the final result is presented at the output.

The generated HDL code runs at two effective rates: a faster rate for internal
computations, and a slower rate for input/output. A special timing controller
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entity (vsum_tc) generates these rates from a single master clock using
counters and multiple clock enables. The vsum_tc entity definition is written
to a separate code file.

The generated model, gm_simplevectorsum_cascade, is displayed after code
generation. This model is shown in the following figure.

As in the previous (gm_simplevectorsum) example, the vsum subsystem is
highlighted in cyan. This highlighting indicates that the subsystem differs in
some respect from the vsum subsystem of the original model.

The following block diagram shows the vsum subsystem in the generated
model. The subsystem has been restructured to reflect the structure of the
generated HDL code; inputs are grouped and routed to three adders for
partial sum computations.

A Unit Delay (highlighted in cyan) has been inserted before the final output.
This block delays, (in this case for one sample period), the appearance of
the final sum at the output. The delay reflects the latency of the generated
HDL code.
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Note The HDL code generated from the example model used in this section
is bit-true to the original model.

However, in some cases, cascaded block implementations can produce
numeric differences between the original model and the generated HDL code,
in addition to the introduction of latency. Numeric differences can arise from
saturation and rounding operations.
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Defaults and Options for Generated Models

In this section...

“Defaults for Model Generation” on page 9-10

“GUI Options” on page 9-11

“Generated Model Properties for makehdl” on page 9-13

Defaults for Model Generation
This section summarizes the defaults used by the coder when building
generated modelst.

Model Generation
The coder always creates a generated model as part of the code generation
process. The generated model is built in memory, before actual generation
of HDL code. The HDL code and the generated model are bit-true and
cycle-accurate with respect to one another.

Note The in-memory generated model is not written to a model file unless
you explicitly save it.

Naming of Generated Models
The naming convention for generated models is

prefix_modelname

where the default prefix is gm_, and the default modelname is the name of
the original model.

If code is generated more than once from the same original model, and
previously generated model(s) exist in memory, an integer is suffixed to the
name of each successively generated model. The suffix ensures that each
generated model has a unique name. For example, if the original model is
named test, generated models will be named gm_test, gm_test0, gm_test1,
etc.
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Note Take care, when regenerating code from your models, to select the
original model for code generation, not a previously generated model.
Generating code from a generated model might introduce unintended delays
or numeric differences that make the model operate incorrectly.

Block Highlighting
By default, blocks in a generated model that differ from the original model,
and their ancestor (parent) blocks in the model hierarchy, are highlighted in
the default color, cyan. You can quickly see whether any differences have
been introduced, by examining the root level of the generated model.

If there are no differences between the original and generated models, no
blocks will be highlighted.

GUI Options
The Simulink HDL Coder GUI provides high-level options controlling
the generation and display of generated models. More detailed control is
available through the makehdl command (see “Generated Model Properties for
makehdl” on page 9-13). Generated model options are located in the top-level
HDL Code Generation pane of the Configuration Parameters dialog box:
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Options include:

• Generate HDL code: (Default) Generate code, but do not display the
generated model.

• Display generated model only: Create and display the generated model,
but do not proceed to code generation.

• Generate HDL code and display generated model: Generate both
code and model, and display the model when completed.
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Generated Model Properties for makehdl
The following table summarizes makehdl properties that provide detailed
controls for the generated model.

Property and Value(s) Description

'Generatedmodelnameprefix',
['string']

The default name for the generated model is
gm_modelname, where gm_ is the default prefix and
modelname is the original model name. To override
the default prefix, assign a string value to this
property.

'Generatemodelname', ['string'] By default, the original model name is used as the
modelname substring of the generated model name.
To specify a different model name, assign a string
value to this property.

'CodeGenerationOutput', 'string' Controls the production of generated code and
display of the generated model. Values are
• GenerateHDLCode: (Default) Generate code, but
do not display the generated model.

• GenerateHDLCodeAndDisplayGeneratedModel:
Create and display generated model, but do not
proceed to code generation.

• DisplayGeneratedModelOnly: Generate both
code and model, and display model when
completed.

'Highlightancestors', ['on' |
'off']

By default, blocks in a generated model that differ
from the original model, and their ancestor (parent)
blocks in the model hierarchy, are highlighted in
a color specified by the Highlightcolor property.
If you do not want the ancestor blocks to be
highlighted, set this property to'off'.

'Highlightcolor', 'RGBName' Specify the color used to highlight blocks in a
generated model that differ from the original model
(default: cyan). Specify the color (RGBName) as one
of the following color string values:

• cyan (default)
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Property and Value(s) Description

• yellow

• magenta

• red

• green

• blue

• white

• black
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Limitations for Generated Models

In this section...

“Fixed-Point Limitation” on page 9-15

“Double-Precision Limitation” on page 9-15

“Model Properties Not Supported for Generated Models” on page 9-16

Fixed-Point Limitation
The maximum Simulink fixed-point word size is 128 bits. HDL does not have
such a limit. This can lead to cases in which the generated HDL code is not
bit-true to the generated model.

When the result of a computation in the generated HDL code has a word size
greater than 128 bits:

• The coder issues a warning.

• Computations in the generated model (and the generated HDL test bench)
are limited to a result word size of 128 bits.

• This word size limitation does not apply to the generated HDL code, so
results returned from the HDL code may not match the HDL test bench or
the generated model.

Double-Precision Limitation
When the binary point in double-precision computations is very large or
very small, the scaling can become inf or 0. The limits of precision can be
expressed as follows:

log2(realmin) ==> -1022

log2(realmax) ==> 1024

Where these limits are exceeded, the binary point is saturated and a warning
is issued. If the generated HDL code has binary point scaling greater than
2^1024, the generated model has a maximum scaling of 2^1024.

9-15



9 Generating Bit-True Cycle-Accurate Models

Similarly if the generated HDL code has binary point scaling smaller than
2^-1022, then the generated model has scaling of 2^-1022.

Model Properties Not Supported for Generated
Models
The coder disables the following model parameters during code generation,
and restores them after code generation completes:

• Block Reduction (BlockReductionOpt)

• Conditional input branch execution (ConditionallyExecuteInputs)

These properties are always disabled in the generated model, even if they are
enabled in the source model.
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Creating and Using Code Generation Reports

In this section...

“Information Included in Code Generation Reports” on page 10-2

“Summary Section” on page 10-3

“Traceability Report Section” on page 10-5

“Generating a Traceability Report from Configuration Parameters” on page
10-8

“Generating a Traceability Report from the Command Line” on page 10-13

“Keeping the Report Current” on page 10-16

“Tracing from Code to Model” on page 10-16

“Tracing from Model to Code” on page 10-18

“Mapping Model Elements to Code Using the Traceability Report” on page
10-21

“Traceability Report Limitations” on page 10-23

“Resource Utilization Report Section” on page 10-23

“Optimization Report Section” on page 10-25

Information Included in Code Generation Reports
The coder creates and displays an HDL Code Generation Report when you
select one or more of the following options:

GUI option makehdl Property

Generate traceability report Traceability, 'on'

Generate resource utilization
report

ResourceReport, 'on'

Generate optimization report OptimizationReport, 'on'

These options appear in the Code Generation Report panel of the HDL
Code Generation pane of the Configuration Parameters dialog box:
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The HDL Code Generation Report is an HTML report that includes a
Summary and one or more of the following optional sections:

Traceability Report

Resource Utilization Report

“Optimization Report Section” on page 10-25

Summary Section
All reports include a Summary section. The Summary lists information about
the model, the DUT, the date of code generation, and top-level coder settings.
The Summary also lists any model properties that have non-default values.
The following report shows a typical Summary section.
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Traceability Report Section
Even a relatively small model can generate hundreds of lines of HDL code.
The coder provides the traceability report section to help you navigate more
easily between the generated code and your source model. When you enable
traceability, the coder creates and displays an HTML code generation report.
You can generate reports from the Configuration Parameters dialog box or
the command line. A typical traceability report looks something like this:
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The traceability report has several subsections:

• The Traceability Report lists Traceable Simulink Blocks / Stateflow
Objects / MATLAB Functions, providing a complete mapping between
model elements and code. The Eliminated / Virtual Blocks section of the
report accounts for blocks that are untraceable.

• The Generated Source Files table contains hyperlinks that let you view
generated HDL code in a MATLAB Web Browser window. This view of the
code includes hyperlinks that let you view the blocks or subsystems from
which the code was generated. You can click the names of source code
files generated from your model to view their contents in a MATLAB Web
Browser window. The report supports two types of linkage between the
model and generated code:

- Code-to-model hyperlinks within the displayed source code let you view
the blocks or subsystems from which the code was generated. Click the
hyperlinks to view the relevant blocks or subsystems in a Simulink
model window.

- Model-to-code linkage lets you view the generated code for any block in
the model. To highlight a block’s generated code in the HTML report,
right-click the block and select HDL Code Generation > Navigate
to Code.

Note If your model includes blocks that have requirements comments, you
can also render the comments as hyperlinked comments within the HTML
code generation report. See “Requirements Comments and Hyperlinks” on
page 10-28 for more information.

In the following sections, the mcombo demonstration model illustrates stages
in the workflow for generating code generation reports from the Configuration
Parameters dialog box and from the command line. The model is available in
the demos folder as the following file:

MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\mcombo.mdl

The root-level mcombo model appears as follows:
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Simulink HDL Coder supports report generation for models, subsystems,
blocks, Stateflow charts, and MATLAB Function blocks. This example uses
the combo subsystem, shown in the following figure. The combo subsystem
includes a Stateflow chart, a MATLAB Function block, and a subsystem.

Generating a Traceability Report from Configuration
Parameters
To generate a Simulink HDL Coder code generation report from the
Configuration Parameters dialog box:

10-8



Creating and Using Code Generation Reports

1 Verify that the model is open.

2 Open the Configuration Parameters dialog box and navigate to the HDL
Code Generation pane.

3 To enable report generation, select Generate traceability report.

If your model includes blocks that have requirements comments, you can
also select Include requirements in block comments to render the
comments as hyperlinked comments within the HTML code generation
report. See “Requirements Comments and Hyperlinks” on page 10-28 for
more information.

4 Verify that Generate HDL for specifies the correct DUT for HDL code
generation. You can generate reports for the root-level model or for
subsystems, blocks, Stateflow charts, or MATLAB Function blocks.

5 Click Apply.
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The dialog box looks something like this:

6 Click Generate to initiate code and report generation.

When you select Generate traceability report, the coder generates
HTML report files as part of the code generation process. Report file
generation is the final phase of that process. As code generation proceeds,
the coder displays progress messages. The process completes with
messages similar to the following:

### Generating HTML files for traceability in slprj\hdl\mcombo\html directory ...
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### HDL Code Generation Complete.
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When code generation is complete, the HTML report appears in a new
window:
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7 To view the different report sections or view the generated code files, click
the hyperlinks in the Contents pane of the report window.

Tip The coder writes the code generation report files to a folder in the
hdlsrc\html\ folder of the build folder. The top-level HTML report file is
named system_codegen_rpt.html, where system is the name of the model,
subsystem, or other component selected for code generation. However,
because the coder automatically opens this file after report generation, you
do not need to access the HTML files directly. Instead, navigate the report
using the links in the top-level window.

For more information on using the report you generate for tracing, see:

• “Tracing from Code to Model” on page 10-16

• “Tracing from Model to Code” on page 10-18

• “Mapping Model Elements to Code Using the Traceability Report” on page
10-21

Generating a Traceability Report from the Command
Line
To generate a Simulink HDL Coder code generation report from the command
line:

1 Open your model by entering:

open_system('model_name');

2 Specify the desired device under test (DUT) for code generation by entering:

gcb = 'path_to_DUT';

You can generate reports for the root-level model or for subsystems, blocks,
Stateflow charts, or MATLAB Function blocks. If you do not specify any
subsystem, block, Stateflow chart, or MATLAB Function block, the coder
generates a report for the top-level model.

3 Enable the makehdl property Traceability by entering:
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makehdl(gcb,'Traceability','on');

When you enable traceability, the coder generates HTML report files as
part of the code generation process. Report file generation is the final phase
of that process. As code generation proceeds, the coder displays progress
messages. The process completes with messages similar to the following:

### Generating HTML files for traceability in slprj\hdl\mcombo\html directory ...

### HDL Code Generation Complete.
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When code generation is complete, the HTML report appears in a new
window:
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4 To view the different report sections or view the generated code files, click
the hyperlinks in the Contents pane of the report window.

Tip The coder writes the code generation report files to a folder in the
hdlsrc\html\ folder of the build folder. The top-level HTML report file is
named system_codegen_rpt.html, where system is the name of the model,
subsystem, or other component selected for code generation. However,
because the coder automatically opens this file after report generation, you
do not need to access the HTML files directly. Instead, navigate the report
using the links in the top-level window.

For more information on using the report you generate for tracing, see:

• “Tracing from Code to Model” on page 10-16

• “Tracing from Model to Code” on page 10-18

• “Mapping Model Elements to Code Using the Traceability Report” on page
10-21

Keeping the Report Current
If you generate a code generation report for a model, and subsequently make
changes to the model, the report might become invalid.

To keep your code generation report current, you should regenerate HDL code
and the report after modifying the source model.

If you close and then reopen a model without making any changes, the report
remains valid.

Tracing from Code to Model
To trace from generated code to your model:

1 Generate code and open an HTML report for the desired DUT (see
“Generating a Traceability Report from Configuration Parameters” on
page 10-8 or “Generating a Traceability Report from the Command Line”
on page 10-13).
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2 In the left pane of the HTML report window, click the desired file name in
the Generated Source Files table to view a source code file.

The following figure shows a view of the source file Gain_Subsystem.vhd.
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3 In the HTML report window, click any of the hyperlinks present to
highlight a source block.

For example, in the HTML report shown in the previous figure, you could
click the hyperlink for the Gain block (highlighted) to view that block in
the model. Clicking the hyperlink locates and displays the corresponding
block in the Simulink model window.

Tracing from Model to Code
Model-to-code traceability lets you select a component at any level of the
model, and view all code references to that component in the HTML code
generation report. You can select any of the following objects for tracing:

• Subsystem

• Simulink block

• MATLAB Function block

• Stateflow chart, or any of the following elements of a Stateflow chart:

- State

- Transition

- Truth table

- MATLAB function inside a chart

To trace a model component:

1 Generate code and open an HTML report for the desired DUT (see
“Generating a Traceability Report from Configuration Parameters” on
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page 10-8 or “Generating a Traceability Report from the Command Line”
on page 10-13).

Tip If you have not generated code for the model, the coder disables the
HDL Code Generation > Navigate to Code menu item.

2 In the model window, right-click the component and select HDL Code
Generation > Navigate to Code.

3 Selecting Navigate to Code activates the HTML code generation report.
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The following figure shows the result of tracing the Stateflow chart within
the combo subsystem.
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In the right pane of the report, the highlighted tag <S3>/Chart indicates
the beginning of the code generated code for the chart.

In the left pane of the report, the total number of highlighted lines of code
(in this case, 1) appears next to the source file name combo.vhd.

The left pane of the report also contains Previous and Next buttons.
These buttons help you navigate through multiple instances of code
generated for a selected component. In this example, there is only one
instance, so the buttons are disabled.

Mapping Model Elements to Code Using the
Traceability Report
The Traceability Report section of the report provides a complete mapping
between model elements and code. The Traceability Report summarizes:

• Eliminated / virtual blocks: accounts for blocks that are untraceable
because they are not included in generated code

• Traceable model elements, including:

- Traceable Simulink blocks

- Traceable Stateflow objects

- Traceable MATLAB functions
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The following figure shows the beginning of a traceability report generated for
the combo subsystem of the mcombo model.
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Traceability Report Limitations
The following limitations apply to Simulink HDL Coder HTML code
generation reports:

• If a block name in your model contains a single quote ('), code-to-model and
model-to-code traceability are disabled for that block.

• If an asterisk (*) in a block name in your model causes a name-mangling
ambiguity relative to other names in the model, code-to-model highlighting
and model-to-code highlighting are disabled for that block. This is most
likely to occur if an asterisk precedes or follows a slash (/) in a block name
or appears at the end of a block name.

• If a block name in your model contains the character ÿ (char(255)),
code-to-model highlighting and model-to-code highlighting are disabled
for that block.

• Some types of subsystems are not traceable from model to code at the
subsystem block level:

- Virtual subsystems

- Masked subsystems

- Nonvirtual subsystems for which code has been optimized away

If you cannot trace a subsystem at the subsystem level, you might be able
to trace individual blocks within the subsystem.

Resource Utilization Report Section
When you select Generate resource utilization report, the coder adds
a Resource Utilization Report section. The Resource Utilization Report
summarizes multipliers, adders/subtractors, and registers consumed by the
device under test (DUT). It also includes a detailed report on resources used
by each subsystem. The detailed report includes (wherever possible) links
back to corresponding blocks in your model.

The Resource Utilization Report is useful for analysis of the effects of
optimizations such as resource sharing and streaming. See Chapter 8,
“Streaming, Resource Sharing, and Delay Balancing”) for example reports.

The following figure shows a typical Resource Utilization Report section.
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Optimization Report Section
When you select Generate optimization report, the coder adds an
Optimization Report section, with two subsections:

• Distributed Pipelining: this subsection shows details of subsystem-level
distributed pipelining (if any subsystems have the DistributedPipelining
option enabled). Details include comparative listings of registers and
flip-flops before and after applying the distributed pipelining transform.

• Streaming and Sharing: this subsection shows both summary and
detailed information about all subsystems for which sharing or streaming
is requested. (See Chapter 8, “Streaming, Resource Sharing, and Delay
Balancing” for example reports.)

The following figure shows the distributed pipelining subsection of a typical
Optimization Report.
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Annotating Generated Code with Comments and
Requirements

In this section...

“Simulink Annotations” on page 10-27

“Text Comments” on page 10-27

“Requirements Comments and Hyperlinks” on page 10-28

The following sections describe how to use the coder to add text annotations
to generated code, in the form of model annotations, text comments or
requirements comments.

Simulink Annotations
You can enter text directly on the block diagram as Simulink annotations.
The coder renders text from Simulink annotations as plain text comments in
generated code. The comments are generated at the same level in the model
hierarchy as the subsystem(s) that contain the annotations, as if they were
Simulink blocks.

See “Annotating Diagrams” in the Simulink documentation for general
information on annotations.

Text Comments
You can enter text comments at any level of the model by placing a DocBlock
at the desired level and entering text comments. The coder renders text from
the DocBlock in generated code as plain text comments. The comments are
generated at the same level in the model hierarchy as the subsystem that
contains the DocBlock.

Set the Document type parameter of the DocBlock to Text. The coder does
not support the HTML or RTF options.

See DocBlock in the Simulink documentation for general information on the
DocBlock.
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Requirements Comments and Hyperlinks
You can assign requirement comments to blocks.

If your model includes requirements comments, you can choose to render the
comments in either of the following formats:

• Text comments in generated code: To include requirements as text
comments in code, use the defaults for Include requirements in block
comments (on) and Generate traceability report (off), as shown:

If you generate code from the command line, set the Traceability and
RequirementComments properties:

makehdl(gcb,'Traceability','off','RequirementComments','on');

The following figure highlights text requirements comments generated for
a Gain block from the mcombo model.
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• Hyperlinked comments: To include requirements comments as hyperlinked
comments in an HTML code generation report, select both Generate
traceability report and Include requirements in block comments.
The following figure shows these options.

If you are generating code from the command line, set the Traceability
and RequirementComments properties:

makehdl(gcb,'Traceability','on','RequirementComments','on');

The comments include links back to a requirements document associated
with the block and to the block within the original model. For example, the
following figure shows two requirements links assigned to a Gain block.
The links point to sections of a text requirements file.
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The following figure shows hyperlinked requirements comments generated
for the Gain block.
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HDL Compatibility Checker
The HDL compatibility checker lets you check whether a subsystem or model
is compatible with HDL code generation. You can run the compatibility
checker from the command line or from the GUI.

To run the compatibility checker from the command line, use the checkhdl
function. The syntax of the function is

checkhdl('system')

where system is the device under test (DUT), typically a subsystem within
the current model.

To run the compatibility checker from the GUI:

1 Open the Configuration Parameters dialog box or the Model Explorer.
Select the HDL Code Generation options category.

2 Select the subsystem you want to check from the Generate HDL for list.

3 Click the Run Compatibility Checker button.

The HDL compatibility checker examines the specified system for any
compatibility problems, such as use of unsupported blocks, illegal data
type usage, etc. The HDL compatibility checker generates an HDL Code
Generation Check Report, which is stored in the target folder. The report file
naming convention is system_report.html, where system is the name of the
subsystem or model passed to the HDL compatibility checker.

The HDL Code Generation Check Report is displayed in a MATLAB Web
Browser window. Each entry in the HDL Code Generation Check Report is
hyperlinked to the block or subsystem that caused the problem. When you
click the hyperlink, the block of interest highlights and displays (provided
that the model referenced by the report is open).
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The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem with a Product block that was configured with a
mixture of double and integer port data types. This configuration is legal in a
model, but incompatible with HDL code generation.

When you click the hyperlink in the left column, the subsystem containing
the offending block opens. The block of interest is highlighted, as shown in
the following figure.
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The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem that passed all compatibility checks. In this case,
the report contains only a hyperlink to the subsystem that was checked.
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Supported Blocks Library
The hdllib.m utility creates a library of all blocks that are currently
supported for HDL code generation. The block library, hdlsupported.mdl,
affords quick access to all supported blocks. By constructing models using
blocks from this library, you can ensure that your models are compatible
with HDL code generation.

The set of supported blocks will change in future releases of the coder. To
keep the hdlsupported.mdl current, you should rebuild the library each time
you install a new release. To create the library:

1 Type the following at the MATLAB prompt:

hdllib

hdllib starts generation of the hdlsupported library. Many libraries load
during the creation of the hdlsupported library. When hdllib completes
generation of the library, it does not unload these libraries.

2 After the library is generated, you must save it to a folder of your choice.
You should retain the file name hdlsupported.mdl, because this document
refers to the supported blocks library by that name.

The following figure shows the top-level view of the hdlsupported library.
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Parameter settings for blocks in the hdlsupported library might differ from
corresponding blocks in other libraries.

For detailed information about supported blocks and HDL block
implementations, see Chapter 4, “Specifying Block Implementations and
Parameters for HDL Code Generation”.
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Code Tracing Using the Mapping File

Note This section refers to generated VHDL entities or Verilog modules
generically as “entities.”

A mapping file is a text report file generated by makehdl. Mapping files
are generated as an aid in tracing generated HDL entities back to the
corresponding systems in the model.

A mapping file shows the relationship between systems in the model and the
VHDL entities or Verilog modules that were generated from them. A mapping
file entry has the form

path --> HDL_name

where path is the full path to a system in the model and HDL_name is the
name of the VHDL entity or Verilog module that was generated from that
system. The mapping file contains one entry per line.

In simple cases, the mapping file may contain only one entry. For example,
the symmetric_fir subsystem of the sfir_fixed demo model generates the
following mapping file:

sfir_fixed/symmetric_fir --> symmetric_fir

Mapping files are more useful when HDL code is generated from complex
models where multiple subsystems generate many entities, and in cases where
conflicts between identically named subsystems are resolved by the coder.

If a subsystem name is unique within the model, the coder simply uses the
subsystem name as the generated entity name. Where identically named
subsystems are encountered, the coder attempts to resolve the conflict
by appending a postfix string (by default, '_entity') to the conflicting
subsystem. If subsequently generated entity names conflict in turn with this
name, incremental numerals (1,2,3,...n) are appended.

As an example, consider the model shown in the following figure. The
top-level model contains subsystems named A nested to three levels.
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When code is generated for the top-level subsystem A, makehdl works its way
up from the deepest level of the model hierarchy, generating unique entity
names for each subsystem.

makehdl('top/A')
### Working on top/A/A/A as A_entity1.vhd
### Working on top/A/A as A_entity2.vhd
### Working on top/A as A.vhd

### HDL Code Generation Complete.

The following example lists the contents of the resultant mapping file.

top/A/A/A --> A_entity1
top/A/A --> A_entity2
top/A --> A

Given this information, you could trace any generated entity back to its
corresponding subsystem by using the open_system command, for example:

open_system('top/A/A')

Each generated entity file also contains the path for its corresponding
subsystem in the header comments at the top of the file, as in the following
code excerpt.

-- Module: A_entity2
-- Simulink Path: top/A
-- Created: 2005-04-20 10:23:46
-- Hierarchy Level: 0
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Adding and Removing the HDL Configuration Component

In this section...

“What Is the HDL Configuration Component?” on page 10-40

“Adding the HDL Coder Configuration Component To a Model” on page
10-40

“Removing the HDL Coder Configuration Component From a Model” on
page 10-41

What Is the HDL Configuration Component?
The HDL configuration component is an internal data structure that the coder
creates and attaches to a model. This component lets you view theHDL Code
Generation pane in the Configurations Parameters dialog box and set HDL
code generation options. Normally, you do not need to interact with the HDL
configuration component in any way. However, there are situations where
you might want to add or remove the HDL configuration component:

• A model that was created on a system that did not have Simulink HDL
Coder installed does not have the HDL configuration component attached.
In this case, you might want to add the HDL configuration component
to the model.

• If a previous user removed the HDL configuration component, you might
want to add the component back to the model.

• If a model will be running on some systems that have Simulink HDL Coder
installed, and on other systems that do not, you might want to keep the
model consistent between both environments. If so, you might want to
remove the HDL configuration component from the model.

Adding the HDL Coder Configuration Component To
a Model
To add the HDL Coder configuration component to a model:

1 In the Simulink Editor, select the Tools menu.
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2 In the HDL Code Generation submenu of the Tools menu, select Add
HDL Coder Configuration to Model.

3 Save the model.

Removing the HDL Coder Configuration Component
From a Model
To remove the HDL Coder configuration component from a model:

1 In the Simulink Editor, select the Tools menu.

2 In the HDL Code Generation submenu of the Tools menu, select
Remove HDL Coder Configuration from Model.

The coder displays a confirmation message.

3 Click Yes to confirm that you want to remove the HDL Coder configuration
component.

4 Save the model.
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Overview of HDL Interfaces
The coder provides a number of different ways to generate interfaces to your
manually-written or legacy HDL code. Depending on your application, you
may want to generate such an interface from different levels of your model:

• Subsystem

• Model referenced by a higher-level model

• HDL Cosimulation block

• RAM blocks

You can also generate a pass-through (wire) HDL implementation for a
subsystem, or omit code generation entirely for a subsystem. Both of these
techniques can be useful in cases where you need a subsystem in your
simulation, but do not need the subsystem in your generated HDL code.
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Generating a Black Box Interface for a Subsystem
A black box interface for a subsystem is a generated VHDL component or
Verilog module that includes only the HDL input/output port definitions for
the subsystem. By generating such a component, you can use a subsystem in
your model to generate an interface to existing manually written HDL code,
third-party IP, or other code generated by Simulink HDL Coder.

To generate the interface, you select the BlackBox implementation for one
or more Subsystem blocks.

Note The BlackBox implementation is not supported for Subsystem blocks
at the top level of the model. The BlackBox implementation is available only
for Subsystem blocks below the level of the DUT.

As an example, consider the following model that contains a subsystem top,
which is the device under test.

The subsystem top contains two lower-level subsystems:
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Suppose that you want to generate HDL code from top, with a black box
interface from the Interface subsystem. To specify a black box interface,
follow these steps:

1 Right-click the Interface subsystem and select HDL Code
Generation > HDL Block Properties.

The HDL Properties dialog box appears:

2 Set Architecture to BlackBox.

The following parameters are available for black box implementation:
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The implementation parameters available for subsystems let you choose
whether or not the generated interface includes clock, reset, and other
ports. Other parameters control signal names associated with ports. See
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“Customizing the Generated Interface” on page 11-43 for information about
these parameters.

3 Change any parameters as desired, and then click Apply.

4 Click OK to close the HDL Properties dialog box.

Generating Code for a Black Box Subsystem
Implementation
When you generate code for the DUT in the ex_blackbox_subsys model, the
following messages appear:

>> makehdl('ex_blackbox_subsys/top')

### Generating HDL for 'ex_blackbox_subsys/top'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation

### Working on ex_blackbox_subsys/top/gencode as hdlsrc\gencode.vhd

### Working on ex_blackbox_subsys/top as hdlsrc\top.vhd

### HDL Code Generation Complete.

In the progress messages, observe that the gencode subsystem generates a
separate file, gencode.vhd, for its VHDL entity definition. The Interface
subsystem does not generate such a file. The interface code for this subsystem
is in top.vhd, generated from ex_blackbox_subsys/top. The following code
listing shows the component definition and instantiation generated for the
Interface subsystem.

COMPONENT Interface

PORT( clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

In1 : IN std_logic_vector(7 DOWNTO 0); -- uint8

In2 : IN std_logic_vector(15 DOWNTO 0); -- uint16

In3 : IN std_logic_vector(31 DOWNTO 0); -- uint32

Out1 : OUT std_logic_vector(31 DOWNTO 0) -- uint32

);

END COMPONENT;

...
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u_Interface : Interface

PORT MAP( clk => clk,

clk_enable => enb,

reset => reset,

In1 => gencode_out1, -- uint8

In2 => gencode_out2, -- uint16

In3 => gencode_out3, -- uint32

Out1 => Interface_out1 -- uint32

);

enb <= clk_enable;

ce_out <= enb;

Out1 <= Interface_out1;

By default, the black box interface generated for subsystems includes clock,
clock enable, and reset ports. “Customizing the Generated Interface” on page
11-43 describes how you can rename or suppress generation of these signals,
and customize other aspects of the generated interface.
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Generating Reusable Code for Atomic Subsystems
If you are unfamiliar with atomic subsystems, see “Ports & Subsystems” in
the Simulink documentation.

By default, the coder generates reusable code for atomic subsystems that are
identical. By generating reusable code, you can often eliminate the creation
of numerous redundant source code files generated for identical subsystems.
The coder can detect reusable identical subsystems at any level of the model
hierarchy.

As an example, consider the model and DUT subsystem shown in the
following figures.
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The DUT subsystem contains three subsystems that are identical except for
their subsystem names. Each subsystem is configured as an atomic subsystem
by selecting Treat as atomic unit in the Subsystem block dialog box.

By default, the coder generates a single source file, vsum.vhd, that provides
the required entity and architecture definition for the vsum component. The
listing below shows the makehdl command and its progress messages.

>> makehdl('simplevectorsum_3atomics/DUT')
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### Generating HDL for 'simplevectorsum_3atomics/DUT'

### Starting HDL Check.

### HDL Check Complete with 0 errors, 0 warnings and 0 messages.

### Begin VHDL Code Generation

### Working on simplevectorsum_3atomics/DUT/vsum as hdlsrc\vsum.vhd

### Working on simplevectorsum_3atomics/DUT as hdlsrc\DUT.vhd

### Generating package file hdlsrc\DUT_pkg.vhd

### HDL Code Generation Complete.

The file generated for the DUT subsystem (DUT.vhd) contains three
instantiations of the vsum component, as shown in the following listing.

ARCHITECTURE rtl OF DUT IS

-- Component Declarations

COMPONENT vsum

PORT( In1 : IN vector_of_std_logic_vector16(0 TO 9); -- int16 [10]

Out1 : OUT std_logic_vector(19 DOWNTO 0) -- sfix20

);

END COMPONENT;

-- Component Configuration Statements

FOR ALL : vsum

USE ENTITY work.vsum(rtl);

-- Signals

SIGNAL vsum_out1 : std_logic_vector(19 DOWNTO 0); -- ufix20

SIGNAL vsum1_out1 : std_logic_vector(19 DOWNTO 0); -- ufix20

SIGNAL vsum2_out1 :std_logic_vector(19 DOWNTO 0); -- ufix20

BEGIN

u_vsum : vsum

PORT MAP( In1 => In1, -- int16 [10]

Out1 => vsum_out1 -- sfix20

);

u_vsum1 : vsum

PORT MAP( In1 => In2, -- int16 [10]

Out1 => vsum1_out1 -- sfix20
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);

u_vsum2 : vsum

PORT MAP( In1 => In3, -- int16 [10]

Out1 => vsum2_out1 -- sfix20

);

Out1 <= vsum_out1;

Out2 <= vsum1_out1;

Out3 <= vsum2_out1;

END rtl;

The HandleAtomicSubsystem property for makehdl lets you control generation
of reusable code for atomic subsystems. HandleAtomicSubsystem is enabled
by default. If you do not wish to generate reusable code for identical atomic
subsystems, you can disable HandleAtomicSubsystem in your makehdl
command, as shown in the following example.

makehdl(simplevectorsum_3atomics/DUT,'HandleAtomicSubsystem','off')

See also “Resource Sharing with Atomic Subsystems” on page 8-30.
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Generating Interfaces for Referenced Models
Simulink model referencing enables you to include models in other models
as blocks. Included models are referenced through Model blocks. See
“Referencing a Model” in the Simulink documentation for details.

For Model blocks, the coder generates a VHDL component or a Verilog module
instantiation. However, makehdl does not attempt to generate HDL code for
the models referenced from Model blocks. You must generate HDL code for
each referenced model individually. To generate code for a referenced model:

1 Select the referencing Model block.

2 Double-click the Model block to open the referenced model.

3 Invoke the checkhdl and makehdl functions to check and generate code
from that model.

Note The checkhdl function does not check port data types within the
referenced model.

The Model block is useful for multiply instantiated blocks, or for blocks for
which you already have manually written HDL code. The generated HDL will
contain all the code that is required to interface to the referenced HDL code.
Code is generated with the following assumptions:

• Every HDL entity or module requires clock, clock enable, and reset ports.
Therefore, these ports are defined for each generated entity or module.

• Use of Simulink data types is assumed. For VHDL code, port data types
are assumed to be STD_LOGIC or STD_LOGIC_VECTOR.

Tip If you encounter typing or naming conflicts between vector ports when
interfacing two or more generated VHDL code modules, consider using the
ScalarizePorts property to generate non-conflicting port definitions.
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Code Generation for Enabled and Triggered Subsystems

In this section...

“Code Generation for Enabled Subsystems” on page 11-14

“Code Generation for Triggered Subsystems” on page 11-15

“Best Practices for Using Enabled and Triggered Subsystems” on page 11-17

Code Generation for Enabled Subsystems
An enabled subsystem is a subsystem that receives a control signal via an
Enable block. The enabled subsystem executes at each simulation step where
the control signal has a positive value. For detailed information on how to
construct and configure enabled subsystems, see “Enabled Subsystems” in
the Simulink documentation.

The coder supports HDL code generation for enabled subsystems that meet
the following conditions:

• The DUT (i.e., the top-level subsystem for which code is generated) must
not be an enabled subsystem.

• The coder does not support subsystems that are both triggered and enabled
for HDL code generation.

• The enable signal must be a scalar.

• The data type of the enable signal must be either boolean or ufix1.

• All inputs and outputs of the enabled subsystem (including the enable
signal) must run at the same rate.

• The States when enabling parameter of the Enable block must be set to
held (i.e., the Enable block does not reset states when enabled).

• The Output when disabled parameter for the enabled subsystem output
port(s) must be set to held (i.e., the enabled subsystem does not reset
output values when disabled).

• The following blocks are not supported in enabled subsystems targeted for
HDL code generation:

- dspmlti4/CIC Decimation
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- dspmlti4/CIC Interpolation

- dspmlti4/FIR Decimation

- dspmlti4/FIR Interpolation

- dspsigops/Downsample

- dspsigops/Upsample

- HDL Cosimulation blocks for EDA Simulator Link

- simulink/Signal Attributes/Rate Transition

- hdldemolib/FFT

- hdldemolib/HDL Streaming FFT

- hdldemolib/Dual Port RAM

- hdldemolib/Simple Dual Port RAM

- hdldemolib/Single Port RAM

- Subsystem black box (SubsystemBlackBoxHDLInstantiation)

See the Automatic Gain Controller demo model for an example of the use of
enabled subsystems in HDL code generation. The location of the demo is:

MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\hdlcoder_agc.mdl

Code Generation for Triggered Subsystems
A triggered subsystem is a subsystem that receives a control signal via a
Trigger block. The enabled triggered executes for one clock cycle each time
a trigger event occurs. For detailed information on how to define trigger
events and configure triggered subsystems, see “Triggered Subsystems” in
the Simulink documentation.

The coder supports HDL code generation for triggered subsystems that meet
the following conditions:

• The DUT (i.e., the top-level subsystem for which code is generated) must
not be a triggered subsystem.
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• The coder does not support subsystems that are both triggered and enabled
for HDL code generation.

• The trigger signal must be a scalar.

• The data type of the trigger signal must be either boolean or ufix1.

• All inputs and outputs of the triggered subsystem (including the trigger
signal) must run at the same rate. (See “Note on Use of the Signal Builder
Block” on page 11-17 for information on a special case.)

• The following blocks are not supported in triggered subsystems targeted for
HDL code generation:

- Discrete-Time Integrator

- dspmlti4/CIC Decimation

- dspmlti4/CIC Interpolation

- dspmlti4/FIR Decimation

- dspmlti4/FIR Interpolation

- dspsigops/Downsample

- dspsigops/Upsample

- HDL Cosimulation blocks for EDA Simulator Link

- simulink/Signal Attributes/Rate Transition

- hdldemolib/FFT

- hdldemolib/HDL Streaming FFT

- hdldemolib/Dual Port RAM

- hdldemolib/Simple Dual Port RAM

- hdldemolib/Single Port RAM

- Subsystem black box (SubsystemBlackBoxHDLInstantiation)

Tip For best results the trigger signal should be a synchronous signal.
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Best Practices for Using Enabled and Triggered
Subsystems
It is good practice to consider the following when using enabled and triggered
subsystems in models targeted for HDL code generation:

• For synthesis results to match Simulink results, Enable and Trigger ports
should be driven by registered logic (with a synchronous clock) on the
FPGA.

• The use of enabled or triggered subsystems can affect synthesis results in
the following ways:

- In some cases the system clock speed may drop by a small percentage.

- Generated code will use more resources, scaling with the number of
enabled or triggered subsystem instances and the number of output
ports per subsystem.

Note on Use of the Signal Builder Block
When you connect outputs from a Signal Builder block to a triggered
subsystem, you may need to use a Rate Transition block. To ensure that all
triggered subsystem ports run at the same rate:

• If the trigger source is a Signal Builder block, but the other triggered
subsystem inputs come from other sources, insert a Rate Transition block
into the signal path before the trigger input.

• If all inputs (including the trigger) come from a Signal Builder block, they
all have the same rate, so no special action is needed
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Code Generation for HDL Cosimulation Blocks
The coder supports HDL code generation for the following HDL Cosimulation
blocks:

• EDA Simulator Link for use with Mentor Graphics ModelSim

• EDA Simulator Link for use with Cadence Incisive

• EDA Simulator Link for use with Synopsys Discovery

Note Support for Synopsys Discovery will be removed in a future release.
The Discovery HDL Cosimulation block is supported in R2011a for
backward compatibility only.

Each of the HDL Cosimulation blocks cosimulates a hardware component by
applying input signals to, and reading output signals from, an HDL model
that executes under an HDL simulator.

See the “5. Define the HDL Cosimulation Block Interface for Component
Simulation” section of the EDA Simulator Link documentation for information
on timing, latency, data typing, frame-based processing, and other issues that
may be of concern to you when setting up an HDL cosimulation.

You can use an HDL Cosimulation block with the coder to generate an
interface to your manually written or legacy HDL code. When an HDL
Cosimulation block is included in a model, the coder generates a VHDL or
Verilog interface, depending on the selected target language.

When the target language is VHDL, the generated interface includes:

• An entity definition. The entity defines ports (input, output, and clock)
corresponding in name and data type to the ports configured on the HDL
Cosimulation block. Clock enable and reset ports are also declared.

• An RTL architecture including a component declaration, a component
configuration declaring signals corresponding to signals connected to the
HDL Cosimulation ports, and a component instantiation.

• Port assignment statements as required by the model.
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When the target language is Verilog, the generated interface includes:

• A module defining ports (input, output, and clock) corresponding in name
and data type to the ports configured on the HDL Cosimulation block. The
module also defines clock enable and reset ports, and wire declarations
corresponding to signals connected to the HDL Cosimulation ports.

• A module instance.

• Port assignment statements as required by the model.

The requirements for using the HDL Cosimulation block for code generation
are the same as those for cosimulation. If you want to check these conditions
before initiating code generation, select Update Diagram from the Edit
menu.
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Generating a Simulink Model for Cosimulation with an
HDL Simulator

In this section...

“Overview” on page 11-20

“Generating a Cosimulation Model from the GUI” on page 11-21

“Structure of the Generated Model” on page 11-27

“Launching a Cosimulation” on page 11-33

“The Cosimulation Script File” on page 11-35

“Complex and Vector Signals in the Generated Cosimulation Model” on
page 11-38

“Generating a Cosimulation Model from the Command Line” on page 11-40

“Naming Conventions for Generated Cosimulation Models and Scripts” on
page 11-40

“Limitations for Cosimulation Model Generation” on page 11-41

Overview

Note To use this feature, your installation must include for one or both of
the following:

• EDA Simulator Link for use with Mentor Graphics ModelSim

• EDA Simulator Link for use with Cadence Incisive

Simulink HDL Coder supports automatic generation of a cosimulation model
as a part of the test bench generation process. Automated cosimulation
model generation provides a Simulink model, configured for both Simulink
simulation and cosimulation of your design with an HDL simulator. The
generated model includes:
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• A behavioral model of your design, realized in a Simulink subsystem.

• A corresponding HDL Cosimulation block, configured to cosimulate
the design using EDA Simulator Link. The coder configures the HDL
Cosimulation block for use with one of the following cosimulation tools:

- EDA Simulator Link for use with Mentor Graphics ModelSim

- EDA Simulator Link for use with Cadence Incisive

• Test input data, calculated from the test bench stimulus that you specify.

• Scope blocks, which let you observe and compare the DUT and HDL
cosimulation outputs, and the error (if any) between these signals.

• Goto and From blocks that capture the stimulus and response signals from
the DUT and use these signals to drive the cosimulation.

• A comparison/assertion mechanism that reports discrepancies between the
original DUT output and the cosimulation output .

In addition to the generated model, the coder generates a TCL script that
launches and configures your cosimulation tool. Comments in the script file
document clock, reset, and other timing signal information defined by the
coder for the cosimulation tool.

Generating a Cosimulation Model from the GUI
This example demonstrates the process for generating a cosimulation model.
The example model, hdl_cosim_demo1, implements a simple multiply and
accumulate (MAC) algorithm. Open the model by entering the name at the
MATLAB command line:

hdl_cosim_demo1

The following figure shows the top-level model.
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The DUT is the MAC subsystem.

Cosimulation model generation takes place during generation of the test
bench. As a best practice, generate HDL code before generating a test bench,
as follows:

1 In the HDL Code Generation pane of the Configuration Parameters
dialog box, select the DUT for code generation. In this case, it is
hdl_cosim_demo1/MAC.
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2 Click Apply.

3 Click Generate. The coder displays progress messages, as shown in the
following listing:

### Applying HDL Code Generation Control Statements

### Starting HDL Check.

### HDL Check Complete with 0 error, 0 warning and 0 message.

### Begin VHDL Code Generation

### Working on hdl_cosim_demo1/MAC as hdlsrc\MAC.vhd
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### HDL Code Generation Complete.

Next, configure the test bench options to include generation of a cosimulation
model:

1 Select the HDL Code Generation > Test Bench pane of the
Configuration Parameters dialog box.

2 Select the Cosimulation model for use with: option. Selecting this
check box enables the pulldown menu to the right.
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3 Select the desired cosimulation tool from the drop-down menu.

4 Configure any required test bench options. The coder documents all
relevant option settings in a generated script file (see “The Cosimulation
Script File” on page 11-35).

5 Click Apply.

Next, generate test bench code and the cosimulation model:

1 Click Generate Test Bench. The coder displays progress messages as
shown in the following listing:

### Begin TestBench Generation

### Generating new cosimulation model: gm_hdl_cosim_demo1_mq0.mdl

### Generating new cosimulation tcl script: hdlsrc/gm_hdl_cosim_demo1_mq0_tcl.m

### Cosimulation Model Generation Complete.

### Generating Test bench: hdlsrc\MAC_tb.vhd

### Please wait ...

### HDL TestBench Generation Complete.

When test bench generation completes, the coder opens the generated
cosimulated model. The following figure shows the generated model.
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2 Save the generated model. The generated model exists only in memory
unless you save it.

As indicated by the code generation messages, the coder generates the
following files in addition to the usual HDL test bench file:

• A cosimulation model (gm_hdl_cosim_demo1_mq0.mdl)

• A file that contains a TCL cosimulation script and information about
settings of the cosimulation model (gm_hdl_cosim_demo1_mq0_tcl.m)

Generated file names derive from the model name, as described in “Naming
Conventions for Generated Cosimulation Models and Scripts” on page 11-40.

The next section, “Structure of the Generated Model” on page 11-27, describes
the features of the model. Before running a cosimulation, become familiar
with these features.

11-26



Generating a Simulink® Model for Cosimulation with an HDL Simulator

Structure of the Generated Model
You can set up and launch a cosimulation using a few controls located in
the generated model. This section examines the model generated from the
example MAC subsystem.

Simulation Path
The model comprises two parallel signal paths. The simulation path, located
in the upper half of the model window, is nearly identical to the original
DUT. The purpose of the simulation path is to execute a normal Simulink
simulation and provide a reference signal for comparison to the cosimulation
results. The following figure shows the simulation path.

The two subsystems labelled ToCosimSrc and ToCosimSink do not change
the performance of the simulation path in any way. Their purpose is to
capture stimulus and response signals of the DUT and route them to and from
the HDL cosimulation block (see “Signal Routing Between Simulation and
Cosimulation Paths” on page 11-30).

Cosimulation Path
The cosimulation path, located in the lower half of the model window,
contains the generated HDL Cosimulation block. The following figure shows
the cosimulation path.
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The FromCosimSrc subsystem receives the same input signals that drive the
DUT. In the gm_hdl_cosim_demo1_mq0 model, the subsystem simply passes
the inputs on to the HDL Cosimulation block. Signals of some other data
types require further processing at this stage (see “Signal Routing Between
Simulation and Cosimulation Paths” on page 11-30).

The Compare subsystem at the end of the cosimulation path compares the
cosimulation output to the reference output produced by the simulation path.
If the comparison detects any discrepancy, an Assertion block in the Compare
subsystem displays a warning message. If desired, you can disable assertions
and control other operations of the Compare subsystem. See “Controlling
Assertions and Scope Displays” on page 11-31 for details.

The coder populates the HDL Cosimulation block with the compiled I/O
interface of the DUT. The following figure shows the Ports pane of the Mac_mq
HDL Cosimulation block.
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The coder sets the Full HDL Name, Sample Time, Data Type, and
other fields as required by the model. The coder also configures other HDL
Cosimulation block parameters under the Timescales and Tcl panes.

Tip The coder always configures the generated HDL Cosimulation block for
the Shared Memory connection method.

Start Simulator Control
When you double-click the Start Simulator control, it launches the selected
cosimulation tool and passes in a startup command to the tool. The Start
Simulator icon displays the startup command, as shown in the following
figure.
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The commands executed when you double-click the Start Simulator icon
launch and set up the cosimulation tool, but they do not start the actual
cosimulation. “Launching a Cosimulation” on page 11-33 describes how to run
a cosimulation with the generated model.

Signal Routing Between Simulation and Cosimulation Paths
The generated model routes signals between the simulation and cosimulation
paths using Goto and From blocks. For example, the Goto blocks in the
ToCosimSrc subsystem route each DUT input signal to a corresponding From
block in the FromCosimSrc subsystem. The following figures show the Goto
and From blocks in each subsystem.
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The preceding figures show simple scalar inputs. Signals of complex and
vector data types require further processing. See “Complex and Vector Signals
in the Generated Cosimulation Model” on page 11-38 for further information.

Controlling Assertions and Scope Displays
The Compare subsystem lets you control the display of signals on scopes, and
warning messages from assertions. The following figure shows the Compare
subsystem for the gm_hdl_cosim_demo1_mq0 model.
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For each output of the DUT, the coder generates an assertion checking
subsystem (Assert_OutN ). The subsystem computes the difference
(err) between the original DUT output (dut ref) and the corresponding
cosimulation output (cosim). The subsystem routes the comparison result to
an Assertion block. If the comparison result is not zero, the Assertion block
reports the discrepancy.

The following figure shows the Assert_Out1 subsystem for the
gm_hdl_cosim_demo1_mq0 model.
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This subsystem also routes the dut ref, cosim, and err signals to a Scope for
display at the top level of the model.

By default, the generated cosimulation model enables all assertions and
displays all Scopes. Use the buttons on the Compare subsystem to disable
assertions or hide Scopes.

Tip Assertion messages are warnings and do not stop simulation.

Launching a Cosimulation
To run a cosimulation with the generated model:

1 Double-click the Compare subsystem to configure Scopes and assertion
settings.

If you want to disable Scope displays or assertion warnings before starting
your cosimulation, use the buttons on the Compare subsystem (shown in
the following figure).
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2 Double-click the Start Simulator control.

The Start Simulator control launches your HDL simulator (in this case,
EDA Simulator Link for use with Mentor Graphics ModelSim).

The HDL simulator in turn executes a startup script. In this
case the startup script consists of the TCL commands located in
gm_hdl_cosim_demo1_mq0_tcl.m. When the HDL simulator finishes
executing the startup script, it displays a message like the following.

# Ready for cosimulation...

3 In the Simulink Editor for the generated model, start simulation.

As the cosimulation runs, the HDL simulator displays messages like the
following.

# Running Simulink Cosimulation block.

# Chip Name: --> hdl_cosim_demo1/MAC

# Target language: --> vhdl

# Target directory: --> hdlsrc

# Fri Jun 05 4:26:34 PM Eastern Daylight Time 2009

# Simulation halt requested by foreign interface.

# done

At the end of the cosimulation, if you have enabled Scope displays, the
compare scope displays the following signals:

• cosim: The result signal output by the HDL Cosimulation block.

• dut ref: The reference output signal from the DUT.

• err: The difference (error) between these two outputs.

The following figure shows these signals.
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The Cosimulation Script File
The generated script file has two sections:

• A comment section that documents model settings that are relevant to
cosimulation.
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• A function that stores several lines of TCL code into a variable, tclCmds.
The cosimulation tools execute these commands when you launch a
cosimulation.

Header Comments Section
The following listing shows the comment section of a script file generated for
the hdl_cosim_demo1 model:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Auto generated cosimulation 'tclstart' script

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Source Model : hdl_cosim_demo1.mdl

% Generated Model : gm_hdl_cosim_demo1.mdl

% Cosimulation Model : gm_hdl_cosim_demo1_mq.mdl

%

% Source DUT : gm_hdl_cosim_demo1_mq/MAC

% Cosimulation DUT : gm_hdl_cosim_demo1_mq/MAC_mq

%

% File Location : hdlsrc/gm_hdl_cosim_demo1_mq_tcl.m

% Created : 2009-06-16 10:51:01

%

% Generated by MATLAB 7.9 and Simulink HDL Coder 1.6

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ClockName : clk

% ResetName : reset

% ClockEnableName : clk_enable

%

% ClockLowTime : 5ns

% ClockHighTime : 5ns

% ClockPeriod : 10ns

%

% ResetLength : 20ns

% ClockEnableDelay : 10ns

% HoldTime : 2ns

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% ModelBaseSampleTime : 1

% OverClockFactor : 1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Mapping of DutBaseSampleTime to ClockPeriod

%

% N = (ClockPeriod / DutBaseSampleTime) * OverClockFactor

% 1 sec in Simulink corresponds to 10ns in the HDL

% Simulator(N = 10)

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ResetHighAt : (ClockLowTime + ResetLength + HoldTime)

% ResetRiseEdge : 27ns

% ResetType : async

% ResetAssertedLevel : 1

%

% ClockEnableHighAt : (ClockLowTime + ResetLength + ClockEnableDelay + HoldTime)

% ClockEnableRiseEdge : 37ns

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The comments section comprises the following subsections:

• Header comments: This section documents the files names for the source
and generated models and the source and generated DUT.

• Test bench settings: This section documents the makehdltb property values
that affect cosimulation model generation. The generated TCL script uses
these values to initialize the cosimulation tool.

• Sample time information:: The next two sections document the base
sample time and oversampling factor of the model. The coder uses
ModelBaseSampleTime and OverClockFactor to map the clock period of
the model to the HDL cosimulation clock period.

• Clock, clock enable, and reset waveforms: This section documents the
computations of the duty cycle of the clk, clk_enable, and reset signals.
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TCL Commands Section
The following listing shows the TCL commands section of a script file
generated for the hdl_cosim_demo1 model:

function tclCmds = gm_hdl_cosim_demo1_mq_tcl

tclCmds = {

'do MAC_compile.do',...% Compile the generated code

'vsimulink work.MAC',...% Initiate cosimulation

'add wave /MAC/clk',...% Add wave commands for chip input signals

'add wave /MAC/reset',...

'add wave /MAC/clk_enable',...

'add wave /MAC/In1',...

'add wave /MAC/In2',...

'add wave /MAC/ce_out',...% Add wave commands for chip output signals

'add wave /MAC/Out1',...

'set UserTimeUnit ns',...% Set simulation time unit

'force /MAC/clk 0 0ns, 1 5ns -r 10ns;',...% Clock force command

'force /MAC/clk_enable 0 0ns, 1 37ns;',...% Clock enable force command

'force /MAC/reset 1 0ns, 0 27ns;',...% Reset force command

'puts "Note: Running pre-simulation for 40ns to reset the chip"',...

'run 40ns;',...% Run simulation to reset the chip

'puts ""',...

'puts "Ready for cosimulation..."',...

};

end

Complex and Vector Signals in the Generated
Cosimulation Model
Input signals of complex or vector data types require insertion of additional
elements into the cosimulation path. this section describes these elements.

Complex Signals
The generated cosimulation model automatically breaks complex inputs
into real and imaginary parts. The following figure shows a FromCosimSrc
subsystem that receives two complex input signals. The subsystem breaks the
inputs into real and imaginary parts before passing them to the subsystem
outputs.
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The model maintains the separation of real and imaginary components
throughout the cosimulation path. The Compare subsystem performs separate
comparisons and separate scope displays for the real and imaginary signal
components.

Vector Signals
The generated cosimulation model flattens vector inputs. The following figure
shows a FromCosimSrc subsystem that receives two vector input signals of
dimension 2. The subsystem flattens the inputs into scalars before passing
them to the subsystem outputs.
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Generating a Cosimulation Model from the Command
Line
To generate a cosimulation model from the command line, pass
the GenerateCosimModel property to the makehdltb function.
GenerateCosimModel takes one of the following property values:

• 'ModelSim : generate a cosimulation model configured for EDA Simulator
Link for use with Mentor Graphics ModelSim.

• 'Incisive': generate a cosimulation model configured for EDA Simulator
Link for use with Cadence Incisive.

In the following command, makehdltb generates a cosimulation model
configured for EDA Simulator Link for use with Mentor Graphics ModelSim.

makehdltb('hdl_cosim_demo1/MAC','GenerateCosimModel','ModelSim');

Naming Conventions for Generated Cosimulation
Models and Scripts
The naming convention for generated cosimulation models is

prefix_modelname_toolid_ suffix.mdl, where
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• prefix_ is the string gm.

• modelname is the name of the generating model.

• toolid is an identifier indicating the HDL simulator chosen by the
Cosimulation model for use with: option. Valid toolid strings are
'mq' and 'in'.

• suffix is an integer that ensures that each generated model has a unique
name. The suffix increments with each successive test bench generation for
a given model. For example, if the original model name is test, then the
sequence of generated cosimulation model names is gm_test_toolid_0,
gm_test_toolid_1, and so on.

The naming convention for generated cosimulation scripts is the same as that
for models, except that the file name extension is .m.

Limitations for Cosimulation Model Generation
When you configure a model for cosimulation model generation, observe the
following limitations:

• Explicitly specify the sample times of all source blocks to the DUT in the
simulation path. Use of the default sample time (-1) in the source blocks
may cause sample time propagation problems in the cosimulation path of
the generated model.

• The coder does not support continuous sample times for cosimulation
model generation. Do not use sample times 0 or Inf in source blocks in
the simulation path.

• Combinatorial output paths (caused by absence of registers in the
generated code) have a latency of one extra cycle in cosimulation. This
causes a one cycle discrepancy in the comparison between the simulation
and cosimulation outputs. To avoid this discrepancy, select the Enable
direct feedthrough for HDL design with pure combinational
datapath option on the Ports pane of the HDL Cosimulation block.

Alternatively, you can avoid the latency by specifing output pipelining (see
“OutputPipeline” on page 5-85). This will fully register all outputs during
code generation.
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• Double data types are not supported for the HDL Cosimulation block.
Avoid use of double data types in the simulation path when generating
HDL code and a cosimulation model.
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Customizing the Generated Interface
Interface generation parameters let you customize port names and other
attributes of interfaces generated for the following block types:

• simulink/Ports & Subsystems/Model

• built-in/Subsystem

• lfilinklib/HDL Cosimulation

• modelsimlib/HDL Cosimulation

The HDL Properties dialog box displays the interface generation parameters
for these block types. The following dialog box shows the default settings for
the BlackBox implementation for a Subsystem block.
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The following table summarizes the names, value settings, and purpose of the
interface generation parameters. All parameters have string data type.
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Parameter Name Values Description

AddClockEnablePort 'on' | 'off'

Default: 'on'

If 'on', add a clock enable
input port to the interface
generated for the block. The
name of the port is specified
by ClockEnableInputPort.

AddClockPort 'on' | 'off'

Default: 'on'

If 'on', add a clock input port
to the interface generated
for the block. The name
of the port is specified by
ClockInputPort.

AddResetPort 'on' | 'off'

Default: 'on'

If 'on', add a reset input port
to the interface generated
for the block. The name
of the port is specified by
ResetInputPort.

ClockEnableInputPort Default: 'clk_enable' Specifies HDL name for
block’s clock enable input
port.

ClockInputPort Default: 'clk' Specifies HDL name for
block’s clock input signal.

EntityName Default: Entity name is derived
from the block name, modified if
necessary to generate a legal VHDL
entity name.

Specifies VHDL entity
or Verilog module name
generated for the block.

GenericList Default: An empty cell array of
string data.

Each element of the cell array
is another cell array of the form
{'Name', 'Value', 'Type'},
where 'Type' is optional. If you
omit 'Type', 'integer' is passed as
the data type.

Specifies a list of
parameter/value pairs
(with optional data type
specification) in string format
to pass to a subsystem with a
BlackBox implementation.
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Parameter Name Values Description

InlineConfigurations
(VHDL only)

'on' | 'off'

Default: If this parameter is
unspecified, defaults to the value of
the global InlineConfigurations
property.

If 'off', suppress generation
of a configurations for
the block, and require
a user-supplied external
configuration.

InputPipeline Default: '0' Specifies the number of input
pipeline stages (pipeline
depth) in the generated code.

OutputPipeline Default: '0' Specifies the number of
output pipeline stages
(pipeline depth) in the
generated code.

ResetInputPort Default: 'reset' Specifies HDL name for
block’s reset input.

VHDLArchitectureName
(VHDL only)

Default: 'rtl' Specifies RTL architecture
name generated for the
block. The architecture
name is generated only if
InlineConfigurations =
'on'.

VHDLComponentLibrary
(VHDL only)

Default: 'work' Specifies the library from
which to load the VHDL
component.
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Pass-Through and No-Op Implementations
The coder provides special-purpose implementations that let you use a block
as a wire, or simply omit a block entirely, in the generated HDL code. These
implementations are summarized in the following table.

Implementation Description

Pass-through implementations Provides a pass-through implementation in which
the block’s inputs are passed directly to its outputs.
(In effect, the block becomes a wire in the HDL
code.) The coder supports the following blocks with
a pass-through implementation:

• Convert 1-D to 2-D

• Reshape

• Signal Conversion

• Signal Specification

No HDL This implementation completely removes the block
from the generated code. This lets you use the block
in simulation but treat it as a “no-op” in the HDL
code. This implementation is used for many blocks
(such as Scopes and Assertions) that are significant
in simulation but would be meaningless in HDL
code.

You can also use this implementation as an
alternative implementation for subsystems.

The coder uses these implementations for many built-in blocks (such as
Scopes and Assertions) that are significant in simulation but would be
meaningless in HDL code.
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Limitation on Generated Verilog Interfaces
This section describes a limitation in the current release that applies to
generation of Verilog interfaces for the following blocks:

• EDA Simulator Link HDL Cosimulation blocks

• Model block

When the target language is Verilog, only scalar ports are supported for code
generation for these block types. Use of vector ports that are on these blocks
will be reported as errors on the compatibility checker (checkhdl) report, and
will raise a code generator (makehdl) error.
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Introduction to Stateflow HDL Code Generation

In this section...

“Overview” on page 12-2

“Demos and Related Documentation” on page 12-2

Overview
Stateflow charts provide concise descriptions of complex system behavior
using hierarchical finite state machine (FSM) theory, flow diagram notation,
and state-transition diagrams.

You use a chart to model a finite state machine or a complex control
algorithm intended for realization as an ASIC or FPGA. When the model
meets design requirements, you then generate HDL code (VHDL or Verilog)
that implements the design embodied in the model. You can simulate and
synthesize generated HDL code using industry standard tools, and then map
your system designs into FPGAs and ASICs.

In general, generation of VHDL or Verilog code from a model containing a
chart does not differ greatly from HDL code generation from any other model.
The HDL code generator is designed to

• Support the largest possible subset of chart semantics that is consistent
with HDL. This broad subset lets you generate HDL code from existing
models without significant remodeling effort.

• Generate bit-true, cycle-accurate HDL code that is fully compatible with
Stateflow simulation semantics.

Demos and Related Documentation

Demos
The following demos, illustrating HDL code generation from subsystems that
include Stateflow charts, are available:

• Greatest Common Divisor
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• Pipelined Configurable FIR

• 2D FDTD Behavioral Model

• CPU Behavioral Model

To open the demo models, type the following command:

demos

This command opens the Help window. In the Demos pane on the left, select
Simulink > Simulink HDL Coder. Then, double-click the icon for any of
the following demos, and follow the instructions in the demo window.

Related Documentation
If you are familiar with Stateflow charts and Simulink models but have not
yet tried HDL code generation, see the hands-on exercises in Chapter 2,
“Introduction to HDL Code Generation”.

If you are not familiar with Stateflow charts, see Stateflow Getting Started
Guide. See also the Simulink® Coder™ documentation.
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Quick Guide to Requirements for Stateflow HDL Code
Generation

In this section...

“Overview” on page 12-4

“Location of Charts in the Model” on page 12-4

“Data Type Usage” on page 12-4

“Chart Initialization” on page 12-5

“Registered Output” on page 12-5

“Restrictions on Imported Code” on page 12-6

“Using Input and Output Events” on page 12-6

“Using For Loops” on page 12-7

“Other Restrictions” on page 12-7

Overview
This section summarizes the requirements and restrictions you should follow
when configuring Stateflow charts that are intended to target HDL code
generation. “Mapping Chart Semantics to HDL” on page 12-9 provides a more
detailed rationale for most of these requirements.

Location of Charts in the Model
A chart intended for HDL code generation must be part of a Simulink
subsystem. See “Structuring a Model for HDL Code Generation” on page
12-26 for an example.

Data Type Usage

Supported Data Types
The current release supports a subset of MATLAB data types in charts
intended for use in HDL code generation. Supported data types are
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• Signed and unsigned integer

• Double and single

Note Results obtained from HDL code generated for models using double
or single data types cannot be guaranteed to be bit-true to results obtained
from simulation of the original model.

• Fixed point

• Boolean

Note Multidimensional arrays of these types are supported, with the
exception of data types assigned to ports. Port data types must be either
scalar or vector.

Chart Initialization
In charts intended for HDL code generation, enable the chart property
Execute (enter) Chart at Initialization. When this property is enabled,
default transitions are tested and all actions reachable from the default
transition taken are executed. These actions correspond to the reset process
in HDL code. “Execution of a Chart at Initialization” describes existing
restrictions under this property.

The reset action must not entail the delay of combinatorial logic. Therefore,
do not perform arithmetic in initialization actions.

Registered Output
The chart property Initialize Outputs Every Time Chart Wakes Up exists
specifically for HDL code generation. This property lets you control whether
output is persistent (stored in registers) from one sample time to the next.
Such use of registers is termed registered output.

When the Initialize Outputs Every Time Chart Wakes Up option is
deselected (the default), registered output is used.
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When the Initialize Outputs Every Time Chart Wakes Up option is
selected, registered output is not used. A default initial value (defined in the
Initial value field of the General pane of the Data Properties dialog box) is
given to each output when the chart wakes up. This assignment guarantees
that there is no reference to outputs computed in previous time steps.

Restrictions on Imported Code
A chart intended for HDL code generation must be entirely self-contained.
The following restrictions apply:

• Do not call MATLAB functions other than min or max.

• Do not use MATLAB workspace data.

• Do not call C math functions

• If the Enable C-like bit operations property is disabled, do not use the
exponentiation operator (^). The exponentiation operator is implemented
with the C Math Library function pow.

• Do not include custom code. Any information entered in the Target Options
dialog box is ignored.

Using Input and Output Events
The coder supports the use of input and output events with Stateflow charts,
subject to the following constraints:

• You can define and use one and only one input event per Stateflow chart.
(There is no restriction on the number of output events you can use.)

• The coder does not support HDL code generation for charts that have a
single input event, and which also have non-zero initial values on the
chart’s output ports.

• All input and output events must be edge-triggered.

For detailed information on inout and output events, see “Using Input Events
to Activate a Stateflow Chart”and “Using Output Events to Activate a
Simulink Block” in the Stateflow documentation.
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Using For Loops
Do not explicitly use loops other than for loops in a chart intended for HDL
code generation. Observe the following restrictions on for loops:

• The data type of the loop counter variable must be int32.

• The coder supports only constant-bounded loops.

The for loop demo (\toolbox\stateflow\sfdemos\sf_for.mdl) illustrates a
correct design pattern for a for loop using a graphical function.

Other Restrictions
The coder imposes a number of additional restrictions on the use of classic
chart features. These limitations exist because HDL does not support some
features of general-purpose sequential programming languages.

• Do not define local events in a chart from which HDL code is to be
generated.

Do not use the following implicit events:

- enter

- exit

- change

You can use the following implicit events:

- wakeup

- tick

Temporal logic can be used provided the base events are limited to these
types of implicit events.

Note Absolute Time Temporal Logic is not supported for HDL code
generation.

• Do not use recursion through graphical functions. The coder does not
currently support recursion.
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• HDL does not support a goto statement. Therefore, do not use unstructured
flow diagrams, such as the flow diagram shown in the following figure.

• Do not read from output ports if outputs are not registered. (Outputs are
not registered if the Initialize Outputs Every Time Chart Wakes Up
option is selected. See also “Registered Output” on page 12-5.)

• Do not use Data Store Memory objects.

• Do not use pointer (&) or indirection (*) operators. See the discussion of
“Pointer and Address Operations”.

• If a chart gets a runtime overflow error during simulation, it is possible
to disable data range error checking and generate HDL code for the chart.
However, in such cases the coder cannot guarantee that results obtained
from the generated HDL code are bit-true to results obtained from the
simulation. Recommended practice is to enable overflow checking and
eliminate overflow conditions from the model during simulation.
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Mapping Chart Semantics to HDL

In this section...

“Software Realization of Chart Semantics” on page 12-9

“Hardware Realization of Stateflow Semantics” on page 12-11

“Restrictions for HDL Realization” on page 12-14

Software Realization of Chart Semantics
The top-down semantics of a chart describe how the chart executes. chart
semantics describe an explicit sequential execution order for elements of
the chart, such as states and transitions. These deterministic, sequential
semantics map naturally to sequential programming languages, such as C.
To support the rich semantics of a chart in the Simulink environment, it is
necessary to combine the state variable updates and output computation
in a single function.

Consider the example model shown in the following figure. The root level of
the model contains three blocks (Sum, Gain and a Stateflow chart) connected
in series.
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The chart from the model is shown in the following figure.

The following Simulink Coder C code excerpt was generated from this
example model. The code illustrates how the chart combines the output
computation and state-variable update.

/* Output and update for atomic system: '<Root>/Chart' */

void hdl_ex_Chart(void)

{

/* Stateflow: '<Root>/Chart' */
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switch (hdl_ex_DWork.Chart.is_c1_hdl_ex) {

case hdl_ex_IN_Off:

if (hdl_ex_B.Gain >= 100.0) {

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_On;

}

break;

case hdl_ex_IN_On:

if (hdl_ex_B.Gain < 100.0) {

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_Off;

} else {

hdl_ex_B.y = hdl_ex_B.Gain;

}

break;

default:

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_On;

break;

}

}

The preceding code assigns either the state or the output, but not both. Values
of output variables, as well as state, persist from one time step to another. If
an output value is not assigned during a chart execution, the output simply
retains its value (as defined in a previous execution).

Hardware Realization of Stateflow Semantics
The following diagram shows a sequential implementation of Stateflow
semantics for output/update computations, appropriate for targeting the C
language.
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A mapping from Stateflow semantics to an HDL implementation demands a
different approach. The following requirements must be met:

• Requirement 1: Hardware designs require separability of output and
state update functions.

• Requirement 2: HDL is a concurrent language. To achieve the goal of
bit-true simulation, execution ordering must be correct.

To meet Requirement 1, an FSM is coded in HDL as two concurrent
blocks that execute under different conditions. One block evaluates the
transition conditions, computes outputs and speculatively computes the
next state variables. The other block updates the current state variables
from the available next state and performs the actual state transitions. This
second block is activated only on the trigger edge of the clock signal, or an
asynchronous reset signal.

In practice, output computations usually occur more often than state updates.
The presence of inputs drives the computation of outputs. State transitions
occur at regular intervals (whenever the chart is activated).

The following diagram shows a concurrent implementation of Stateflow
semantics for output and update computations, appropriate for targeting
HDL.
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The HDL code generator reuses the original single-function implementation
of Stateflow semantics almost without modification. There is one important
difference: instead of computing with state variables directly, all state
computations are performed on local shadow variables. These variables
are local to the HDL function update_chart. At the beginning of the
update_chart functions, current_state is copied into the shadow variables.
At the end of the update_chart function, the newly computed state is
transferred to registers called collectively next_state. The values held
in these registers are copied to current_state (also registered) when
update_state is called.

By using local variables, this approach maps Stateflow sequential semantics
to HDL sequential statements, avoiding the use of concurrent statements.
For instance, local chart variables in function scope map to VHDL variables
in process scope. In VHDL, variable assignment is sequential. Therefore,
statements in a Stateflow function that uses local variables can safely map to
statements in a VHDL process that uses corresponding variables. The VHDL
assignments execute in the same order as the assignments in the Stateflow
function. The execution sequence is automatically correct.
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Restrictions for HDL Realization
Some restrictions on chart usage are required to achieve a valid mapping
from a chart to HDL code. These are summarized briefly in “Quick Guide
to Requirements for Stateflow HDL Code Generation” on page 12-4. The
following sections give a more detailed rationale for most of these restrictions.

Self-Contained Charts
The Stateflow C target allows generated code to have some dependencies
on code or data that is external to the chart. Stateflow charts intended for
HDL code generation, however, must be self-contained. Observe the following
rules for creating self-contained charts:

• Do not use C math functions such as sin and pow. There is no HDL
counterpart to the C math library.

• Do not use calls to functions coded in any language other than HDL. For
example, do not call MATLAB functions for a simulation target, as in the
following statement:

ml.disp( hello )

• Do not use custom code. There is no mechanism for embedding external
HDL code into generated HDL code. Custom C code (user-written C code
intended for linkage with C code generated from a Stateflow chart) is
ignored during HDL code generation.

See also Chapter 11, “Interfacing Subsystems and Models to HDL Code”.

• Do not use pointer (&) or indirection (*) operators. Pointer and indirection
operators have no function in a chart in the absence of custom code. Also,
pointer and indirection operators do not map directly to synthesizable HDL.

• Do not share data (via Data Store Memory blocks) between charts. The
coder does not map such global data to HDL, because HDL does not support
global data.

Charts Must Not Use Features Unsupported by HDL
When creating charts intended for HDL code generation, follow these
guidelines to avoid using Stateflow features that cannot be mapped to HDL:
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• Avoid recursion. While charts permit recursion (through both event
processing and user-written recursive graphical functions), HDL does not
allow recursion.

• Do not use Stateflow and local events. These event types do not have
equivalents in HDL. Therefore, these event types are not supported for
HDL code generation.

• Avoid unstructured code. Although charts allow unstructured code to be
written (through transition flow diagrams and graphical functions), this
usage results in goto statements and multiple function return statements.
HDL does not support either goto statements or multiple function return
statements.

• Select the Execute (enter) Chart At Initialization chart property. This
option executes the update chart function immediately following chart
initialization. The option is needed for HDL because outputs must be
available at time 0 (hardware reset). You must select this option to ensure
bit-true HDL code generation.
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Using Mealy and Moore Machine Types in HDL Code
Generation

In this section...

“Overview” on page 12-16

“Generating HDL for a Mealy Finite State Machine” on page 12-17

“Generating HDL Code for a Moore Finite State Machine” on page 12-21

Overview
Stateflow charts support modeling of three types of state machines:

• Classic (default)

• Mealy

• Moore

This section discusses issues you should consider when generating HDL code
for Mealy and Moore state machines. See “Building Mealy and Moore Charts”
for detailed information on Mealy and Moore state machines.

Mealy and Moore state machines differ in the following ways:

• The outputs of a Mealy state machine are a function of the current state
and inputs.

• The outputs of a Moore state machine are a function of the current state
only.

Moore and Mealy state charts can be functionally equivalent; an equivalent
Mealy chart can derive from a Moore chart, and vice versa. A Mealy state
machine has a richer description and usually requires a smaller number of
states.

The principal advantages of using Mealy or Moore charts as an alternative
to Classic charts are:
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• At compile time, Mealy and Moore charts are validated to ensure that
they conform to their formal definitions and semantic rules, and violations
are reported.

• Moore charts generate more efficient code than Classic charts, for both
C and HDL targets.

The execution of a Mealy or Moore chart at time t is the evaluation of the
function represented by that chart at time t. The initialization property for
output ensures that every output is defined at every time step. Specifically,
the output of a Mealy or Moore chart at one time step must not depend on the
output of the chart at an earlier time step.

Consider the outputs of a chart. Stateflow charts permit output latching. That
is, the value of an output computed at time t persists until time t+d, when it
is overwritten. The output latching feature corresponds to registered outputs.
Therefore, Mealy and Moore charts intended for HDL code generation should
not use registered outputs.

Generating HDL for a Mealy Finite State Machine
When generating HDL code for a chart that models a Mealy state machine,
make sure that

• The chart meets all general code generation requirements, as described
in “Quick Guide to Requirements for Stateflow HDL Code Generation”
on page 12-4.

• The Initialize Outputs Every Time Chart Wakes Up option is selected.
This option is selected automatically when the Mealy option is selected from
the State Machine Type pop-up menu, as shown in the following figure.
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• Actions are associated with transitions inner and outer transitions only.

Mealy actions are associated with transitions. In Mealy machines, output
computation is expected to be driven by the change on inputs. In fact,
the dependence of output on input is the fundamental distinguishing
factor between the formal definitions of Mealy and Moore machines. The
requirement that actions be given on transitions is to some degree stylistic,
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rather than necessary to enforce Mealy semantics. However, it is natural that
output computation follows input conditions on input, because transition
conditions are primarily input conditions in any machine type.

The following figure shows an example of a chart that models a Mealy state
machine.

The following code example lists the VHDL process code generated for the
Mealy chart.

12-19



12 Stateflow® HDL Code Generation Support

Tip The model from which the VDHL code was generated uses only
fixed-point and Boolean data types.

Vending_Machine : PROCESS (is_Vending_Machine, coin)

BEGIN

is_Vending_Machine_next <= is_Vending_Machine;

soda <= '0';

CASE is_Vending_Machine IS

WHEN IN_got_0 =>

IF unsigned(coin) = 1 THEN

soda <= '0';

is_Vending_Machine_next <= IN_got_nickel;

ELSIF unsigned(coin) = 2 THEN

soda <= '0';

is_Vending_Machine_next <= IN_got_dime;

END IF;

WHEN IN_got_dime =>

IF unsigned(coin) = 1 THEN

soda <= '1';

is_Vending_Machine_next <= IN_got_0;

ELSIF unsigned(coin) = 2 THEN

soda <= '1';

is_Vending_Machine_next <= IN_got_nickel;

END IF;

WHEN IN_got_nickel =>

IF unsigned(coin) = 1 THEN

soda <= '0';

is_Vending_Machine_next <= IN_got_dime;

ELSIF unsigned(coin) = 2 THEN

soda <= '1';

is_Vending_Machine_next <= IN_got_0;

END IF;
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WHEN OTHERS =>

is_Vending_Machine_next <= IN_got_0;

END CASE;

END PROCESS Vending_Machine;

Generating HDL Code for a Moore Finite State
Machine
When generating HDL code for a chart that models a Moore state machine,
make sure that

• The chart meets all general code generation requirements, as described
in “Quick Guide to Requirements for Stateflow HDL Code Generation”
on page 12-4.

• The Initialize Outputs Every Time Chart Wakes Up option is selected.
This option is selected automatically when the Moore option is selected from
the State Machine Type pop-up menu, as shown in the following figure.
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• Actions occur in states only. These actions are unlabeled, and execute
when exiting the states or remaining in the states.

Moore actions must be associated with states, because output computation
must be dependent only on states, not input. Therefore, the current
configuration of active states at time step t determines output. Thus, the
single action in a Moore state serves as both during and exit action. If
state S is active when a chart wakes up at time t, it contributes to the
output whether it remains active into time t+1 or not.

• No local data or graphical functions are used.

Function calls and local data are not allowed in a Moore chart. This ensures
that output does not depend on input in ways that would be difficult for
the HDL code generator to verify. These restrictions strongly encourage
coding practices that separate output and input.
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• No references to input occur outside of transition conditions.

• Output computation occurs only in leaf states.

This restriction guarantees that the chart’s top-down semantics compute
outputs as if actions were evaluated strictly before inner and outer flow
diagrams.

The following figure shows a Stateflow chart of a Moore state machine.

The following code example illustrates generated VHDL code for the Moore
chart.

Chart : PROCESS (is_Chart, w)

-- local variables

VARIABLE is_Chart_temp : T_state_type_is_Chart;
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BEGIN

is_Chart_temp := is_Chart;

z <= '0';

CASE is_Chart_temp IS

WHEN IN_A =>

z <= '0';

WHEN IN_B =>

z <= '0';

WHEN IN_C =>

z <= '1';

WHEN OTHERS =>

is_Chart_temp := IN_NO_ACTIVE_CHILD;

END CASE;

CASE is_Chart_temp IS

WHEN IN_A =>

IF w = '1' THEN

is_Chart_temp := IN_B;

END IF;

WHEN IN_B =>

IF w = '1' THEN

is_Chart_temp := IN_C;

ELSIF w = '0' THEN

is_Chart_temp := IN_A;

END IF;

WHEN IN_C =>

IF w = '0' THEN

is_Chart_temp := IN_A;

END IF;

WHEN OTHERS =>

is_Chart_temp := IN_A;

END CASE;
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is_Chart_next <= is_Chart_temp;

END PROCESS Chart;
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Structuring a Model for HDL Code Generation
In general, generation of VHDL or Verilog code from a model containing a
Stateflow chart does not differ greatly from HDL code generation from any
other model.

A chart intended for HDL code generation must be part of a subsystem that
represents the Device Under Test (DUT). The DUT corresponds to the top
level VHDL entity or Verilog module for which code is generated, tested and
eventually synthesized. The top level Simulink components that drive the
DUT correspond to the behavioral test bench.

You may need to restructure your models to meet this requirement. If the
chart for which you want to generate code is at the root level of your model,
embed the chart in a subsystem and connect the appropriate signals to the
subsystem inputs and outputs. In most cases, you can do this by simply
clicking on the chart and then selecting Edit > Create Subsystem in the
model window.

As an example of a properly structured model, consider the fan_control
model shown in the following figure. In this model, the subsystem SFControl
is the DUT. Two input signals drive the DUT.
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The SFControl subsystem, shown in the following figure, contains a Stateflow
chart, Fan Controller. The chart that has two inputs and an output.
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The Fan Controller chart, shown in the following figure, models a simple
system that monitors input temperature data (temp) and turns on the two
fans (FAN1 and FAN2) based on the range of the temperature. A manual
override input (switch) is provided to turn the fans off forcibly. At each time
step the Fan Controller outputs a value (airflow) representing the number
of fans that are turned on.
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The following makehdl command generates VHDL code (by default) for the
subsystem containing the chart.

makehdl(`fan_control/SF_Control')

As code generation for this subsystem proceeds, the coder displays progress
messages as shown in the following listing:

### Begin VHDL Code Generation

### Working on fan_control/SFControl as hdlsrc\SFControl.vhd
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### Working on fan_control/SFControl/Fan Controller as hdlsrc\Fan_Controller.vhd

Stateflow parsing for model "fan_control"...Done

Stateflow code generation for model "fan_control"....Done

### HDL Code Generation Complete.

As the progress messages indicate, the coder generates a separate code file for
each level of hierarchy in the model. The following VHDL files are written
to the target folder, hdlsrc:

• Fan_Controller.vhd contains the entity and architecture code
(Fan_Controller) for the chart.

• SFControl.vhd contains the code for the top level subsystem. This file also
instantiates a Fan_Controller component.

The coder also generates a number of other files (such as scripts for HDL
simulation and synthesis tools) in the target folder. See the “HDL Code
Generation Defaults” on page 20-33 for full details on generated files.

The following code excerpt shows the entity declaration generated for the
Fan_Controller chart inFan_Controller.vhd.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY Fan_Controller IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

temp : IN std_logic_vector(11 DOWNTO 0);

b_switch : IN std_logic_vector(1 DOWNTO 0);

airflow : OUT std_logic_vector(15 DOWNTO 0));

END Fan_Controller;

This model shows the use of fixed point data types without scaling
(e.g. ufix12, sfix2) , as supported for HDL code generation. At the
entity/instantiation boundary, all signals in the generated code are typed as
std_logic or std_logic_vector, following general VHDL coding standard
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conventions. In the architecture body, these signals are assigned to the
corresponding typed signals for further manipulation and access.
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Design Patterns Using Advanced Chart Features

In this section...

“Temporal Logic” on page 12-32

“Graphical Function” on page 12-35

“Hierarchy and Parallelism” on page 12-37

“Stateless Charts” on page 12-41

“Truth Tables” on page 12-44

Temporal Logic
Stateflow temporal logic operators (such as after, before, or every) are
Boolean operators that operate on recurrence counts of Stateflow events.
Temporal logic operators can appear only in conditions on transitions that
from states, and in state actions. Although temporal logic does not introduce
any new events into a Stateflow model, it is useful to think of the change of
value of a temporal logic condition as an event. You can use temporal logic
operators in many cases where a counter is required. A common use case
would be to use temporal logic to implement a time-out counter.

Note Absolute Time Temporal Logic is not supported for HDL code
generation.

For detailed information about temporal logic, see “Using Temporal Logic
in State Actions and Transitions”.

The chart shown in the following figure uses temporal logic in a design for a
debouncer. Instead of instantaneously switching between on and off states,
the chart uses two intermediate states and temporal logic to ignore transients.
The transition is committed based on a time-out.
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The following code excerpt shows VHDL code generated from this chart.

Chart : PROCESS (is_Chart, temporalCounter_i1, y_reg, u)

-- local variables

VARIABLE temporalCounter_i1_temp : unsigned(7 DOWNTO 0);

BEGIN

is_Chart_next <= is_Chart;

y_reg_next <= y_reg;

temporalCounter_i1_temp := temporalCounter_i1;

IF temporalCounter_i1_temp < to_unsigned(7, 8) THEN

temporalCounter_i1_temp :=

tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(temporalCounter_i1_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);
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END IF;

CASE is_Chart IS

WHEN IN_tran1 =>

IF u = '1' THEN

is_Chart_next <= IN_on;

y_reg_next <= '1';

ELSIF temporalCounter_i1_temp >= to_unsigned(3, 8) THEN

is_Chart_next <= IN_off;

y_reg_next <= '0';

END IF;

WHEN IN_tran2 =>

IF temporalCounter_i1_temp >= to_unsigned(5, 8) THEN

is_Chart_next <= IN_on;

y_reg_next <= '1';

ELSIF u = '0' THEN

is_Chart_next <= IN_off;

y_reg_next <= '0';

END IF;

WHEN IN_off =>

IF u = '1' THEN

is_Chart_next <= IN_tran2;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

WHEN IN_on =>

IF u = '0' THEN

is_Chart_next <= IN_tran1;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

WHEN OTHERS =>

is_Chart_next <= IN_on;
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y_reg_next <= '1';

END CASE;

temporalCounter_i1_next <= temporalCounter_i1_temp;

END PROCESS Chart;

Graphical Function
A graphical function is a function defined graphically by a flow diagram.
Graphical functions reside in a chart along with the diagrams that invoke
them. Like MATLAB functions and C functions, graphical functions can
accept arguments and return results. Graphical functions can be invoked in
transition and state actions.

The “Stateflow Chart Notation” chapter of the Stateflow documentation
includes a detailed description of graphical functions.

The following figure shows a graphical function that implements a 64–by–64
counter.
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The following code excerpt shows VHDL code generated for this graphical
function.

x64_counter_sf : PROCESS (x, y, outx_reg, outy_reg)

-- local variables

VARIABLE x_temp : unsigned(7 DOWNTO 0);

VARIABLE y_temp : unsigned(7 DOWNTO 0);

BEGIN

outx_reg_next <= outx_reg;

outy_reg_next <= outy_reg;

x_temp := x;

y_temp := y;

x_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(x_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF x_temp < to_unsigned(64, 8) THEN
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NULL;

ELSE

x_temp := to_unsigned(0, 8);

y_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(y_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF y_temp < to_unsigned(64, 8) THEN

NULL;

ELSE

y_temp := to_unsigned(0, 8);

END IF;

END IF;

outx_reg_next <= x_temp;

outy_reg_next <= y_temp;

x_next <= x_temp;

y_next <= y_temp;

END PROCESS x64_counter_sf;

Hierarchy and Parallelism
Stateflow charts support both hierarchy (states containing other states) and
parallelism (multiple states that can be active simultaneously).

In Stateflow semantics, parallelism is not synonymous with concurrency.
Parallel states can be active simultaneously, but they are executed
sequentially according to their execution order. (Execution order is displayed
on the upper right corner of a parallel state).

For detailed information on hierarchy and parallelism, see “Stateflow
Hierarchy of Objects” and “Execution Order for Parallel States”.

For HDL code generation, an entire chart maps to a single output computation
process. Within the output computation process:

• The execution of parallel states proceeds sequentially.

• Nested hierarchical states map to nested CASE statements in the generated
HDL code.
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The following figure shows a chart that models a security system. The chart
contains

• Simultaneously active parallel states (in order of execution: Door, Motion,
Win, Alarm).

• Hierarchy, where the parallel states contain child states. For example,
the Motion state contains Active and Inactive states, and the Active state
contains further nested states (Debouncing and Idle).

• Graphical functions (such as send_alert and send_warn) that set and
reset flags, simulating broadcast and reception of events. These functions
are used, rather than local events, because local events are not supported
for HDL code generation.
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The following VHDL code excerpt was generated for the parallel Door
and Motion states from this chart. The higher-level CASE statements
corresponding to Door and Motion are generated sequentially to match
Stateflow simulation semantics. The hierarchy of nested states maps to
nested CASE statements in VHDL.

CASE is_Door IS

WHEN IN_Active =>

IF D_mode = '0' THEN

is_Door_next <= IN_Disabled;

ELSIF tmw_to_boolean(Door_sens AND tmw_to_stdlogic(is_On = IN_Idle)) THEN
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alert_temp := '1';

END IF;

WHEN IN_Disabled =>

IF D_mode = '1' THEN

is_Door_next <= IN_Active;

ELSIF tmw_to_boolean(Door_sens) THEN

warn_temp := '1';

END IF;

WHEN OTHERS =>

--On the first sample call the door mode is set to active.

is_Door_next <= IN_Active;

END CASE;

--This state models the modes of a motion detector sensor and implements logic

-- to respond when that sensor is producing a signal.

CASE is_Motion IS

WHEN IN_Active =>

IF M_mode = '0' THEN

is_Active_next <= IN_NO_ACTIVE_CHILD;

is_Motion_next <= IN_Disabled;

ELSE

CASE is_Active IS

WHEN IN_Debouncing =>

IF tmw_to_boolean(('1'

AND tmw_to_stdlogic(temporalCounter_i2_temp >=

to_unsigned(1, 8)))

AND tmw_to_stdlogic(is_On = IN_Idle))

THEN

alert_temp := '1';

is_Active_next <= IN_Debouncing;

temporalCounter_i2_temp := to_unsigned(0, 8);

ELSIF tmw_to_boolean( NOT Mot_sens) THEN

is_Active_next <= b_IN_Idle;
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END IF;

WHEN b_IN_Idle =>

IF tmw_to_boolean(Mot_sens) THEN

is_Active_next <= IN_Debouncing;

temporalCounter_i2_temp := to_unsigned(0, 8);

END IF;

WHEN OTHERS =>

NULL;

END CASE;

Stateless Charts
Charts consisting of pure flow diagrams (i.e., charts having no states
) are useful in capturing if-then-else constructs used in procedural
languages like C. The “Stateflow Chart Notation” chapter in the Stateflow
documentation discusses flow diagrams in detail.

As an example, consider the following logic, expressed in C-like pseudocode.

if(U1==1) {
if(U2==1) {

Y = 1;
}else{

Y = 2;
}

}else{
if(U2<2) {

Y = 3;
}else{

Y = 4;
}

}

The following figures illustrate how to model this control flow using a
stateless chart. The root model contains a subsystem and inputs and outputs
to the chart.
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The following figure shows the flow diagram that implements the
if-then-else logic.

The following generated VHDL code excerpt shows the nested IF-ELSE
statements obtained from the flow diagram.

Chart : PROCESS (Y1_reg, Y2_reg, U1, U2)

-- local variables

BEGIN

Y1_reg_next <= Y1_reg;

Y2_reg_next <= Y2_reg;

IF unsigned(U1) = to_unsigned(1, 8) THEN

IF unsigned(U2) = to_unsigned(1, 8) THEN

Y1_reg_next <= to_unsigned(1, 8);

ELSE

Y1_reg_next <= to_unsigned(2, 8);

END IF;
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ELSIF unsigned(U2) < to_unsigned(2, 8) THEN

Y1_reg_next <= to_unsigned(3, 8);

ELSE

Y1_reg_next <= to_unsigned(4, 8);

END IF;

Y2_reg_next <= tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(unsigned(U1), 9),10)

+ tmw_to_unsigned(tmw_to_unsigned(unsigned(U2), 9), 10), 8);

END PROCESS Chart;

Truth Tables
The coder supports HDL code generation for:

• Truth Table functions within a chart (see “Truth Table Functions” in the
Stateflow documentation)

• Truth Table blocks in Simulink models (see Truth Table in the Stateflow
documentation)

This section examines a Truth Table function in a chart, and the VHDL code
generated for the chart.

Truth Tables are well-suited for implementing compact combinatorial logic. A
typical application for Truth Tables is to implement nonlinear quantization or
threshold logic. Consider the following logic:

Y = 1 when 0 <= U <= 10
Y = 2 when 10 < U <= 17
Y = 3 when 17 < U <= 45
Y = 4 when 45 < U <= 52
Y = 5 when 52 < U

A stateless chart with a single call to a Truth Table function can represent
this logic succinctly.

The following figure shows a model containing a subsystem, DUT.
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The subsystem contains a chart, quantizer, as shown in the following figure.
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The next figure shows the quantizer chart, containing the Truth Table.
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The following figure shows the threshold logic, as displayed in the Truth
Table Editor.
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The following code excerpt shows VHDL code generated for the quantizer
chart.

quantizer : PROCESS (Y_reg, U)

-- local variables

VARIABLE aVarTruthTableCondition_1 : std_logic;

VARIABLE aVarTruthTableCondition_2 : std_logic;

VARIABLE aVarTruthTableCondition_3 : std_logic;

VARIABLE aVarTruthTableCondition_4 : std_logic;

BEGIN

Y_reg_next <= Y_reg;

-- Condition #1

aVarTruthTableCondition_1 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(10, 8));

-- Condition #2

aVarTruthTableCondition_2 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(17, 8));

-- Condition #3

aVarTruthTableCondition_3 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(45, 8));

-- Condition #4

aVarTruthTableCondition_4 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(52, 8));

IF tmw_to_boolean(aVarTruthTableCondition_1) THEN

-- D1

-- Action 1

Y_reg_next <= to_unsigned(1, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_2) THEN

-- D2

-- Action 2

Y_reg_next <= to_unsigned(2, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_3) THEN

-- D3

-- Action 3

Y_reg_next <= to_unsigned(3, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_4) THEN

-- D4

-- Action 4

Y_reg_next <= to_unsigned(4, 8);

ELSE

-- Default

-- Action 5

Y_reg_next <= to_unsigned(5, 8);
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END IF;

END PROCESS quantizer;

Note When generating code for a Truth Table block in a Simulink model, the
coder writes a separate entity/architecture file for the Truth Table code. The
file is named Truth_Table.vhd (for VHDL) or Truth_Table.v (for Verilog).
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13 Generating HDL Code with the MATLAB Function Block

Introduction

In this section...

“HDL Applications for the MATLAB Function Block” on page 13-2

“Related Documentation and Demos” on page 13-3

HDL Applications for the MATLAB Function Block
The MATLAB Function block contains a MATLAB function in a model. The
function’s inputs and outputs are represented by ports on the block, which
allow you to interface your model to the function code. When you generate
HDL code for a MATLAB Function block, the coder generates two main
HDL code files:

• A file containing entity and architecture code that implement the actual
algorithm or computations generated for the MATLAB Function block.

• A file containing an entity definition and RTL architecture that provide a
black box interface to the algorithmic code generated for the MATLAB
Function block.

The structure of these code files is analogous to the structure of the model,
in which a subsystem provides an interface between the root model and the
function in the MATLAB Function block.

The MATLAB Function block supports a powerful subset of the MATLAB
language that is well-suited to HDL implementation of various DSP and
telecommunications algorithms, such as:

• Sequence and pattern generators

• Encoders and decoders

• Interleavers and deinterleaver

• Modulators and demodulators

• Multipath channel models; impairment models

• Timing recovery algorithms

• Viterbi algorithm; Maximum Likelihood Sequence Estimation (MLSE)
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• Adaptive equalizer algorithms

Related Documentation and Demos
The following documentation and demos provide further information on the
MATLAB Function block.

Related Documentation
For general documentation on the MATLAB Function block, see the MATLAB
Function block reference.

The coder supports most of the fixed-point runtime library functions supported
by the MATLAB Function block. See the Fixed-Point Toolbox documentation
for a complete list of these functions, and general information on limitations
that apply to the use of Fixed-Point Toolbox with the MATLAB Function block.

Demos
The hdlcoderviterbi2.mdl demo models a Viterbi decoder, incorporating
an MATLAB Function block for use in simulation and HDL code generation.
To open the model, type the following command at the MATLAB command
prompt:

hdlcoderviterbi2

The hdlcodercpu_eml.mdl demo models a CPU with a Harvard RISC
architecture, incorporating many MATLAB Function blocks to simulate and
generate code for CPU and memory elements. To open the model, type the
following command at the MATLAB command prompt:

hdlcodercpu_eml
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Tutorial Example: Incrementer

In this section...

“Example Model Overview” on page 13-4

“Setting Up” on page 13-7

“Creating the Model and Configuring General Model Settings” on page 13-7

“Adding a MATLAB Function Block to the Model” on page 13-8

“Setting Optimal Fixed-Point Options for the MATLAB Function Block”
on page 13-9

“Programming the MATLAB Function Block” on page 13-12

“Constructing and Connecting the DUT_eML_Block Subsystem” on page
13-13

“Compiling the Model and Displaying Port Data Types” on page 13-16

“Simulating the eml_hdl_incrementer_tut Model” on page 13-16

“Generating HDL Code” on page 13-17

Example Model Overview
In this tutorial, you construct and configure a simple model,
eml_hdl_incrementer_tut, and then generate VHDL code from the
model. eml_hdl_incrementer_tut includes a MATLAB Function block
that implements a simple fixed-point counter function, incrementer. The
incrementer function is invoked once during each sample period of the
model. The function maintains a persistent variable count, which is either
incremented or reinitialized to a preset value (ctr_preset_val), depending
on the value passed in to the ctr_preset input of the MATLAB Function
block. The function returns the counter value (counter) at the output of the
MATLAB Function block.

The MATLAB Function block resides in a subsystem, DUT_eML_Block. The
subsystem functions as the device under test (DUT) from which you generate
HDL code.
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The root-level model drives the subsystem and includes Display and To
Workspace blocks for use in simulation. (The Display and To Workspace
blocks do not generate any HDL code.)

Tip If you do not want to construct the model step by step, or do not have
time, you can open the completed model by entering the name at the command
prompt:

eml_hdl_incrementer

After you open the model, save a copy of it to your local folder as
eml_hdl_incrementer_tut.mdl.

The Incrementer Function Code
The following code listing gives the complete incrementer function definition:
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function counter = incrementer(ctr_preset, ctr_preset_val)

% The function incrementer implements a preset counter that counts

% how many times this block is called.

%

% This example function shows how to model memory with persistent variables,

% using fimath settings suitable for HDL. It also demonstrates MATLAB

% operators and other language features supported

% for HDL code generation from MATLAB Function blocks.

%

% On the first call, the result 'counter' is initialized to zero.

% The result 'counter' saturates if called more than 2^14-1 times.

% If the input ctr_preset receives a nonzero value, the counter is

% set to a preset value passed in to the ctr_preset_val input.

persistent current_count;

if isempty(current_count)

% zero the counter on first call only

current_count = uint32(0);

end

counter = getfi(current_count);

if ctr_preset

% set counter to preset value if input preset signal is nonzero

counter = ctr_preset_val;

else

% otherwise count up

inc = counter + getfi(1);

counter = getfi(inc);

end

% store counter value for next iteration

current_count = uint32(counter);

function hdl_fi = getfi(val)

nt = numerictype(0,14,0);

fm = hdlfimath;

hdl_fi = fi(val, nt, fm);
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Setting Up
Before you begin building the example model, set up a working folder for your
model and generated code.

Setting Up a folder

1 Start MATLAB.

2 Create a folder named eml_tut, for example:

mkdir D:\work\eml_tut

The eml_tut folder stores the model you create, and also contains
subfolders and generated code. The location of the folder does not matter,
except that it should not be within the MATLAB tree.

3 Make the eml_tut folder your working folder, for example:

cd D:\work\eml_tut

Creating the Model and Configuring General Model
Settings
In this section, you create a model and set some parameters to values
recommended for HDL code generation hdlsetup.m command. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently. See “Initializing Model Parameters with
hdlsetup” on page 2-8 for further information about hdlsetup.

To set the model parameters:

1 Create a new model.

2 Save the model as eml_hdl_incrementer_tut.mdl.

3 At the MATLAB command prompt, type:

hdlsetup('eml_hdl_incrementer_tut');

4 Open the Configuration Parameters dialog box.
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5 Set the following Solver options, which are useful in simulating this model:

• Fixed step size: 1

• Stop time: 5

6 Click OK to save your changes and close the Configuration Parameters
dialog box.

7 Save your model.

Adding a MATLAB Function Block to the Model

1 Open the Simulink Library Browser. Then, select the
Simulink/User-Defined Functions library.

2 Select the MATLAB Function block from the library window and add it
to the model.

3 Change the block label from MATLAB Function to eml_inc_block.

4 Save the model.

5 Close the Simulink Library Browser.
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Setting Optimal Fixed-Point Options for the MATLAB
Function Block
This section describes how to set up the FIMATH specification and other
fixed-point options that are recommended for efficient HDL code generation
from the MATLAB Function block. The recommended settings are:

• ProductMode property of the FIMATH specification: 'FullPrecision'

• SumMode property of the FIMATH specification: 'FullPrecision'

• Treat these inherited signal types as fi objects option: Fixed-point
(This is the default setting.)

Configure the options as follows:

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a
MATLAB Function Block to the Model” on page 13-8.

2 Double-click the MATLAB Function block to open it for editing. The
MATLAB Function Block Editor appears.

3 Select Tools > Edit Data/Ports. The Ports and Data Manager dialog box
opens, displaying the default FIMATH specification and other properties
for the MATLAB Function block.
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4 Select Specify Other. Selecting this option enables the MATLAB
Function block fimath text entry field.

5 The hdlfimath.m function is a utility that defines a FIMATH specification
that is optimized for HDL code generation. Replace the default MATLAB
Function block fimath specification with a call to hdlfimath as follows:

hdlfimath;
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6 Click Apply. The MATLAB Function block properties should now appear
as shown in the following figure.

7 Close the Ports and Data Manager.

8 Save the model.
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Programming the MATLAB Function Block
The next step is add code to the MATLAB Function block to define the
incrementer function, and then use diagnostics to check for errors.

1 Open the eml_hdl_incrementer_tut model that you created in “Adding a
MATLAB Function Block to the Model” on page 13-8.

2 Double-click the MATLAB Function block to open it for editing.

3 In the MATLAB Function Block Editor, delete the default code.

4 Copy the complete incrementer function definition from the listing given in
“The Incrementer Function Code” on page 13-5, and paste it into the editor.

5 Save the model. Doing so updates the model window, redrawing the
MATLAB Function block.

Changing the function header of the MATLAB Function block makes the
following changes to the block icon:

• The function name in the middle of the block changes to incrementer.

• The arguments ctr_preset and ctr_preset_val appear as input ports
to the block.

• The return value counter appears as an output port from the block.

6 Resize the block to make the port labels more legible.

7 Save the model again.
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Constructing and Connecting the DUT_eML_Block
Subsystem
This section assumes that you have completed “Programming the MATLAB
Function Block” on page 13-12 with a successful build. In this section, you
construct a subsystem containing the incrementer function block, to be used
as the device under test (DUT) from which to generate HDL code. You then
set the port data types and connect the subsystem ports to the model.

Constructing the DUT_eML_Block Subsystem
Construct a subsystem containing the incrementer function block as follows:

1 Click the incrementer function block.

2 From the Edit menu, select Create Subsystem.

A subsystem, labeled Subsystem, is created in the model window.

3 Change the Subsystem label to DUT_eML_Block.

Setting Port Data Types for the MATLAB Function Block

1 Double-click the subsystem to view its interior. As shown in the following
figure, the subsystem contains the incrementer function block, with input
and output ports connected.

2 Double-click the incrementer function block to open the MATLAB
Function Block Editor.

3 In the editor, select Tools > Edit Data/Ports to open the Ports and Data
Manager.
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4 Select the ctr_preset entry in the port list on the left. Click the button
labeled >> to display the Data Type Assistant. Set Mode for this port to
Built in. Set Data type to boolean. Click the button labeled << to close
the Data Type Assistant. Click Apply.

5 Select the ctr_preset_val entry in the port list on the left. Click the
button labeled >> to display the Data Type Assistant. Set Mode for this
port to Fixed point. Set Signedness to Unsigned. Set Word length to
14. Click the button labeled << to close the Data Type Assistant. Click
Apply.

6 Select the counter entry in the port list on the left. Click the button labeled
>> to display the Data Type Assistant. Verify thatMode for this port is set
to Inherit: Same as Simulink. Click the button labeled << to close the
Data Type Assistant. Click Apply.

7 Close the Ports and Data Manager dialog box and the MATLAB Function
Block Editor.

8 Save the model and close the DUT_eML_Block subsystem.

Connecting Subsystem Ports to the Model
Next, connect the ports of the DUT_eML_Block subsystem to the model as
follows:

1 From the Sources library, add a Constant block to the model. Set the value
of the Constant to 1, and the Output data type to boolean. Change the
block label to Preset.

2 Make a copy of the Preset Constant block. Set its value to 0, and change
its block label to Increment.

3 From the Signal Routing library, add a Manual Switch block to the model.
Change its label to Control. Connect its output to the In1 port of the
DUT_eML_Block subsystem.

4 Connect the Preset Constant block to the upper input of the Control
switch block. Connect the Increment Constant block to the lower input of
the Control switch block.
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5 Add a third Constant block to the model. Set the value of the Constant
to 15, and the Output data type to Inherit via back propagation.
Change the block label to Preset Value.

6 Connect the Preset Value Constant block to the In2 port of the
DUT_eML_Block subsystem.

7 From the Sinks library, add a Display block to the model. Connect it to the
Out1 port of the DUT_eML_Block subsystem.

8 From the Sinks library, add a To Workspace block to the model. Route the
output signal from the DUT_eML_Block subsystem to the To Workspace
block.

9 Save the model.

Checking the Function for Errors
Use the built-in diagnostics of MATLAB Function blocks to test for syntax
errors:

1 Open the eml_hdl_incrementer_tut model.

2 Double-click the MATLAB Function block incrementer to open it for
editing.

3 In the MATLAB Function Block Editor, select Tools > Build to compile
and build the MATLAB Function block code.

The build process displays some progress messages. These messages include
some warnings, because the ports of the MATLAB Function block are not yet
connected to any signals. You can ignore these warnings.

The build process builds an S-function for use in simulation. The build
process includes generation of C code for the S-function. The code generation
messages you see during the build process refer to generation of C code, not
HDL code generation.

When the build concludes successfully, a message window appears indicating
that parsing was successful. If errors are found, the Diagnostics Manager
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lists them. See the MATLAB Function block documentation for information
on debugging MATLAB Function block build errors.

Compiling the Model and Displaying Port Data Types
In this section you enable the display of port data types and then compile the
model. Model compilation verifies that the model structure and settings are
correct, and update the model display.

1 From the Simulink Format menu, select Port/Signal Displays > Port
Data Types.

2 From the Simulink Edit menu, select Update Diagram (or press Ctrl+D)
to compile the model. This triggers a rebuild of the code. After the model
compiles, the block diagram updates to show the port data types.

3 Save the model.

Simulating the eml_hdl_incrementer_tut Model
Start simulation. If necessary, the code rebuilds before the simulation starts.

After the simulation completes, the Display block shows the final output
value returned by the incrementer function block. For example, given a
Start time of 0, a Stop time of 5, and a zero value at the ctr_preset port,
the simulation returns a value of 6:

13-16



Tutorial Example: Incrementer

You might want to experiment with the results of toggling the Control switch,
changing the Preset Value constant, and changing the total simulation time.
You might also want to examine the workspace variable simout, which is
bound to the To Workspace block.

Generating HDL Code
In this section, you select the DUT_eML_Block subsystem for HDL code
generation, set basic code generation options, and then generate VHDL code
for the subsystem.

Selecting the Subsystem for Code Generation
Select the DUT_eML_Block subsystem for code generation:

1 Open the Configuration Parameters dialog box and click the HDL Code
Generation pane.

2 Select eml_hdl_incrementer_tut/DUT_eML_Block from the Generate
HDL for list.

3 Click OK.

Generating VHDL Code
The top-level HDL Code Generation options should now be set as follows:

13-17



13 Generating HDL Code with the MATLAB Function Block

• The Generate HDL for field specifies the
eml_hdl_incrementer_tut/DUT_eML_Block subsystem for code
generation.

• The Language field specifies (by default) generation of VHDL code.

• The Folder field specifies (by default) that the code generation target
folder is a subfolder of your working folder, named hdlsrc.

Before generating code, select Current Folder from the Desktop menu
in the MATLAB Command Window. This displays the Current Folder
browser, which lets you easily access your working folder and the files that
are generated within it.

To generate code:

1 Click the Generate button.

The coder compiles the model before generating code. Depending on model
display options (such as port data types), the appearance of the model
might change after code generation.

2 As code generation proceeds, the coder displays progress messages. The
process should complete successfully with a message like the following:

### HDL Code Generation Complete.

The names of generated VHDL files in the progress messages are
hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB Editor.

3 A folder icon for the hdlsrc folder is now visible in the Current Folder
browser. To view generated code and script files, double-click the hdlsrc
folder icon.

4 Observe that two VHDL files were generated. The structure of HDL code
generated for MATLAB Function blocks is similar to the structure of code
generated for Stateflow charts and Digital Filter blocks. The VHDL files
that were generated in the hdlsrc folder are:
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• eml_inc_blk.vhd: VHDL code. This file contains entity and architecture
code implementing the actual computations generated for the MATLAB
Function block.

• DUT_eML_Block.vhd: VHDL code. This file contains an entity definition
and RTL architecture that provide a black box interface to the code
generated in eml_inc_blk.vhd.

The structure of these code files is analogous to the structure of the model,
in which the DUT_eML_Block subsystem provides an interface between the
root model and the incrementer function in the MATLAB Function block.

The other files generated in the hdlsrc folder are:

• DUT_eML_Block_compile.do: Mentor Graphics ModelSim compilation
script (vcom command) to compile the VHDL code in the two .vhd files.

• DUT_eML_Block_synplify.tcl: Synplify synthesis script.

• DUT_eML_Block_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 10-37).

5 To view the generated VHDL code in the MATLAB Editor, double-click the
DUT_eML_Block.vhd or eml_inc_blk.vhd file icons in the Current Folder
browser.

At this point you should study the ENTITY and ARCHITECTURE definitions
while referring to “HDL Code Generation Defaults” on page 20-33 in the
makehdl reference documentation. The reference documentation describes
the default naming conventions and correspondences between the elements
of a model (subsystems, ports, signals, etc.) and elements of generated
HDL code.
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Useful MATLAB Function Block Design Patterns for HDL

In this section...

“The eml_hdl_design_patterns Library” on page 13-20

“Efficient Fixed-Point Algorithms” on page 13-22

“Using Persistent Variables to Model State” on page 13-26

“Creating Intellectual Property with the MATLAB Function Block” on
page 13-27

“Modeling Control Logic and Simple Finite State Machines” on page 13-28

“Modeling Counters” on page 13-30

“Modeling Hardware Elements” on page 13-31

The eml_hdl_design_patterns Library
The eml_hdl_design_patterns library is an extensive collection of examples
demonstrating useful applications of the MATLAB Function block in HDL
code generation. The following figure shows the library.
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The location of the library in the MATLAB folder structure is
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MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\eml_hdl_design_patterns.mdl

Refer to example models in the eml_hdl_design_patterns library while
reading the following sections. To open the library, type the following
command at the MATLAB command prompt:

eml_hdl_design_patterns

You can use many blocks in the library as cookbook examples of various
hardware elements, as follows:

• Copy a block from the library to your model and use it as a computational
unit, (generating code in a separate HDL file).

• Copy the code from the block and use it as a subfunction in an existing
MATLAB Function block (generating inline HDL code).

Efficient Fixed-Point Algorithms
The MATLAB Function block supports fixed point arithmetic using the
Fixed-Point Toolbox fi function. This function supports rounding and
saturation modes that are useful for coding algorithms that manipulate
arbitrary word and fraction lengths. The coder supports all fi rounding and
overflow modes.

HDL code generated from the MATLAB Function block is bit-true to MATLAB
semantics. Generated code uses bit manipulation and bit access operators
(e.g., Slice, Extend, Reduce, Concat, etc.) that are native to VHDL and Verilog.

The following discussion shows how HDL code generated from the MATLAB
Function block follows cast-before-sum semantics, in which addition and
subtraction operands are cast to the result type before the addition or
subtraction is performed.

Open the eml_hdl_design_patterns library and select the
Combinatrics/eml_expr block. eml_expr implements a simple expression
containing addition, subtraction, and multiplication operators with differing
fixed point data types. The generated HDL code shows the conversion of this
expression with fixed point operands. The following listing shows the code
within the MATLAB Function block.
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% fixpt arithmetic expression
expr = (a*b) - (a+b);

% cast the result to (sfix7_En4) output type
y = fi(expr, 1, 7, 4);

The default fimath specification for the block determines the behavior of
arithmetic expressions using fixed point operands inside the MATLAB
Function block:

fimath(...
'RoundMode', 'ceil',...
'OverflowMode', 'saturate',...
'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...
'SumMode', 'FullPrecision', 'SumWordLength', 32,...
'CastBeforeSum', true)

The data types of operands and output are as follows:

• a: (sfix5_En2)

• b: (sfix5_En3)

• y: (sfix7_En4).

Before HDL Code generation, the operation

expr = (a*b) - (a+b);

is broken down internally into the following substeps:

1 tmul = a * b;

2 tadd = a + b;

3 tsub = tmul - tadd;

4 y = tsub;

Based on the fimath settings (see “Recommended Practices” on page 13-60)
this expression is further broken down internally as follows:
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• Based on the specified ProductMode, 'FullPrecision', the output type of
tmul is computed as (sfix10_En5).

• Since the CastBeforeSum property is set to 'true', substep 2 is broken
down as follows:

t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;

sfix7_En3 is the result sum type after aligning binary points and
accounting for an extra bit to account for possible overflow.

• Based on intermediate types of tmul (sfix10_En5) and tadd (sfix7_En3)
the result type of the subtraction in substep 3 is computed as sfix11_En5.
Accordingly, substep 3 is broken down as follows:

t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;

• Finally the result is cast to a smaller type (sfix7_En4) leading to the
following final expression statements:

tmul = a * b;
t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;
t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;
y = (sfix7_En4) tsub;

The following listings show the generated VHDL and Verilog code from the
eml_expr block.

VHDL code excerpt:

BEGIN

--MATLAB Function 'Subsystem/eml_expr': '<S2>:1'

-- fixpt arithmetic expression

--'<S2>:1:4'

mul_temp <= signed(a) * signed(b);
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sub_cast <= resize(mul_temp, 11);

add_cast <= resize(signed(a & '0'), 7);

add_cast_0 <= resize(signed(b), 7);

add_temp <= add_cast + add_cast_0;

sub_cast_0 <= resize(add_temp & '0' & '0', 11);

expr <= sub_cast - sub_cast_0;

-- cast the result to correct output type

--'<S2>:1:7'

y <= "0111111" WHEN ((expr(10) = '0') AND (expr(9 DOWNTO 7) /= "000"))

OR ((expr(10) = '0') AND (expr(7 DOWNTO 1) = "0111111"))

ELSE

"1000000" WHEN (expr(10) = '1') AND (expr(9 DOWNTO 7) /= "111")

ELSE

std_logic_vector(expr(7 DOWNTO 1) + ("0" & expr(0)));

END fsm_SFHDL;

Verilog code excerpt:

//MATLAB Function 'Subsystem/eml_expr': '<S2>:1'

// fixpt arithmetic expression

//'<S2>:1:4'

assign mul_temp = a * b;

assign sub_cast = mul_temp;

assign add_cast = {a[4], {a, 1'b0}};

assign add_cast_0 = b;

assign add_temp = add_cast + add_cast_0;

assign sub_cast_0 = {{2{add_temp[6]}}, {add_temp, 2'b00}};

assign expr = sub_cast - sub_cast_0;

// cast the result to correct output type

//'<S2>:1:7'

assign y = (((expr[10] == 0) && (expr[9:7] != 0))

|| ((expr[10] == 0) && (expr[7:1] == 63)) ? 7'sb0111111 :

((expr[10] == 1) && (expr[9:7] != 7) ? 7'sb1000000 :

expr[7:1] + $signed({1'b0, expr[0]})));

These code excerpts show that the generated HDL code from the MATLAB
Function block represents the bit-true behavior of fixed point arithmetic
expressions using high level HDL operators. The HDL code is generated
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using HDL coding rules like high level bitselect and partselect replication
operators and explicit sign extension and resize operators.

Using Persistent Variables to Model State
To model sophisticated control logic, the ability to model registers is a
basic requirement. In the MATLAB Function block programming model,
state-holding elements are represented as persistent variables. A variable
that is declared persistent retains its value across function calls in software,
and across sample time steps during simulation. State-holding elements
in hardware also require this behavior. Similarly, state-holding elements
should retain their values across clock sample times. The values of persistent
variables can also be changed using global and local reset conditions.

The subsystem Delays in the eml_hdl_design_patterns library illustrates
how persistent variables can be used to simulate various kinds of delay blocks.

The unit delay block delays the input sample by one simulation time step.
A persistent variable is used to hold the value, as shown in the following
code listing:

function y = fcn(u)

persistent u_d;
if isempty(u_d)

u_d = fi(-1, numerictype(u), fimath(u));
end

% return delayed input from last sample time hit
y = u_d;

% store the current input to be used later
u_d = u;

In this example, u is a fixed-point operand of type sfix6. In the generated
HDL code, initialization of persistent variables is moved into the master reset
region in the initialization process as follows.

ENTITY Unit_Delay IS

PORT (
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clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

u : IN std_logic_vector(15 DOWNTO 0);

y : OUT std_logic_vector(15 DOWNTO 0));

END Unit_Delay;

ARCHITECTURE fsm_SFHDL OF Unit_Delay IS

BEGIN

initialize_Unit_Delay : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

y <= std_logic_vector(to_signed(0, 16));

ELSIF clk'EVENT AND clk = '1' THEN

IF clk_enable = '1' THEN

y <= u;

END IF;

END IF;

END PROCESS initialize_Unit_Delay;

Refer to the Delays subsystem to see how vectors of persistent variables can
be used to model integer delay, tap delay, and tap delay vector blocks. These
design patterns are useful in implementing sequential algorithms that carry
state between executions of the MATLAB Function block in a model.

Creating Intellectual Property with the MATLAB
Function Block
The MATLAB Function block lets you quickly author intellectual property. It
also lets you create alternate implementations of a part of an algorithm.

For example, the subsystem Comparators in the eml_hdl_design_patterns
library includes several alternate algorithms for finding the minimum value
of a vector. The Comparators/eml_linear_min block finds the minimum of
the vector in a linear mode serially. The Comparators/eml_tree_min block
compares the elements in a tree structure. The tree implementation can
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achieve a higher clock frequency by adding pipeline registers between the
log2(N) stages. (See eml_hdl_design_patterns/Filters for an example.)

Now consider replacing the simple comparison operation in the Comparators
blocks with an arithmetic operation (e.g., addition, subtraction, or
multiplication) where intermediate results must be quantized. Using fimath
rounding settings, you can fine tune intermediate value computations before
intermediate values feed into the next stage. This can be a powerful technique
for tuning the generated hardware or customizing your algorithm.

By using MATLAB Function blocks in this way, you can guide the detailed
operation of the HDL code generator even while writing high-level algorithms.

Modeling Control Logic and Simple Finite State
Machines
MATLAB Function block control constructs such as switch/case and
if-elseif-else, coupled with fixed point arithmetic operations let you model
control logic quickly.

The FSMs/mealy_fsm_blk andFSMs/moore_fsm_blk blocks in the
eml_hdl_design_patterns library provide example implementations of
Mealy and Moore finite state machines in the MATLAB Function block.

The following listing implements a Moore state machine.

function Z = moore_fsm(A)

persistent moore_state_reg;

if isempty(moore_state_reg)

moore_state_reg = fi(0, 0, 2, 0);

end

S1 = 0;

S2 = 1;

S3 = 2;

S4 = 3;

switch uint8(moore_state_reg)
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case S1,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S2;

end

case S2,

Z = false;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S2;

end

case S3,

Z = false;

if (~A)

moore_state_reg(1) = S2;

else

moore_state_reg(1) = S3;

end

case S4,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S3;

end

otherwise,

Z = false;

end

In this example, a persistent variable (moore_state_reg) models state
variables. The output depends only on the state variables, thus modeling a
Moore machine.

The FSMs/mealy_fsm_blk block in the eml_hdl_design_patterns library
implements a Mealy state machine. A Mealy state machine differs from a
Moore state machine in that the outputs depend on inputs as well as state
variables.
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The MATLAB Function block can quickly model simple state machines
and other control-based hardware algorithms (such as pattern matchers or
synchronization-related controllers) using control statements and persistent
variables.

For modeling more complex and hierarchical state machines with complicated
temporal logic, use a Stateflow chart to model the state machine.

Modeling Counters
To implement arithmetic and control logic algorithms in MATLAB Function
blocks intended for HDL code generation, there are some simple HDL related
coding requirements:

• The top level MATLAB Function block must be called once per time step.

• It must be possible to fully unroll program loops.

• Persistent variables with proper reset values and update logic must be
used to hold values across simulation time steps.

• Quantized data variables must be used inside loops.

The following script shows how to model a synchronous up/down counter
with preset values and control inputs. The example provides both master
reset control of persistent state variables and local reset control using block
inputs (e.g. presetClear). The isempty condition enters the initialization
process under the control of a synchronous reset. The presetClear section is
implemented in the output section in the generated HDL code.

Both the up and down case statements implementing the count loop require
that the values of the counter are quantized after addition or subtraction. By
default, the MATLAB Function block automatically propagates fixed-point
settings specified for the block. In this script, however, fixed-point settings for
intermediate quantities and constants are explicitly specified.

function [Q, QN] = up_down_ctr(upDown, presetClear, loadData, presetData)

% up down result

% 'result' syntheses into sequential element
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result_nt = numerictype(0,4,0);

result_fm = fimath('OverflowMode', 'saturate', 'RoundMode', 'floor');

initVal = fi(0, result_nt, result_fm);

persistent count;

if isempty(count)

count = initVal;

end

if presetClear

count = initVal;

elseif loadData

count = presetData;

elseif upDown

inc = count + fi(1, result_nt, result_fm);

-- quantization of output

count = fi(inc, result_nt, result_fm);

else

dec = count - fi(1, result_nt, result_fm);

-- quantization of output

count = fi(dec, result_nt, result_fm);

end

Q = count;

QN = bitcmp(count);

Modeling Hardware Elements
The following code example shows how to model shift registers in MATLAB
Function block code by using the bitsliceget and bitconcat function.
This function implements a serial input and output shifters with a 32–bit
fixed-point operand input. See the Shift Registers/shift_reg_1by32 block
in the eml_hdl_design_patterns library for more details.

function sr_out = fcn(shift, sr_in)

%shift register 1 by 32

persistent sr;

if isempty(sr)
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sr = fi(0, 0, 32, 0, 'fimath', fimath(sr_in));

end

% return sr[31]

sr_out = getmsb(sr);

if (shift)

% sr_new[32:1] = sr[31:1] & sr_in

sr = bitconcat(bitsliceget(sr, 31, 1), sr_in);

end

The following code example shows VHDL process code generated for the
shift_reg_1by32 block.

shift_reg_1by32 : PROCESS (shift, sr_in, sr)

BEGIN

sr_next <= sr;

-- MATLAB Function Function 'Subsystem/shift_reg_1by32': '<S2>:1'

--shift register 1 by 32

--'<S2>:1:1

-- return sr[31]

--'<S2>:1:10'

sr_out <= sr(31);

IF shift /= '0' THEN

--'<S2>:1:12'

-- sr_new[32:1] = sr[31:1] & sr_in

--'<S2>:1:14'

sr_next <= sr(30 DOWNTO 0) & sr_in;

END IF;

END PROCESS shift_reg_1by32;

The Shift Registers/shift_reg_1by64 block shows a 64 bit shifter. In
this case, the shifter uses two fixed point words, to represent the operand,
overcoming the 32–bit word length limitation for fixed-point integers.

Browse the eml_hdl_design_patterns model for other useful hardware
elements that can be easily implemented using the MATLAB Function Block.
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Using Fixed-Point Bitwise Functions

In this section...

“Overview” on page 13-33

“Bitwise Functions Supported for HDL Code Generation” on page 13-33

“Bit Slice and Bit Concatenation Functions” on page 13-39

“Shift and Rotate Functions” on page 13-40

Overview
The MATLAB Function block supports many bitwise functions that operate
on fixed-point integers of arbitrary length. For general information on
MATLAB Function block bitwise functions, see “Bitwise Operations” in the
Fixed-Point Toolbox documentation.

This section describes HDL code generation support for these functions.
“Bitwise Functions Supported for HDL Code Generation” on page 13-33
summarizes the supported functions, with notes that describe considerations
specific to HDL code generation. “Bit Slice and Bit Concatenation Functions”
on page 13-39 and “Shift and Rotate Functions” on page 13-40 provide usage
examples, with corresponding MATLAB Function block code and generated
HDL code.

The Bit Twiddlers/hdl_bit_ops block in the eml_hdl_design_patterns
library provides further examples of how to use these functions for various
bit manipulation operations.

Bitwise Functions Supported for HDL Code Generation
The following table summarizes MATLAB Function block bitwise functions
that are supported for HDL code generation. The Description column notes
considerations that are specific to HDL. The following conventions are used
in the table:

• a,b: Denote fixed-point integer operands.

• idx: Denotes an index to a bit within an operand. Indexes can be scalar or
vector, depending on the function.
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MATLAB Function blocks follow the MATLAB (1-based) indexing
conventions. In generated HDL code, such indexes are converted to
zero-based indexing conventions.

• lidx, ridx: denote indexes to the left and right boundaries delimiting bit
fields. Indexes can be scalar or vector, depending on the function.

• val: Denotes a Boolean value.

Note Indexes, operands, and values passed as arguments bitwise functions
can be scalar or vector, depending on the function. See “Bitwise Operations”
in the Fixed-Point Toolbox documentation for information on the individual
functions.

MATLAB Function
Block Syntax

Description See Also

bitand(a, b) Bitwise AND bitand

bitandreduce(a, lidx,
ridx)

Bitwise AND of a field of consecutive bits within
a. The field is delimited by lidx , ridx.

Output data type: ufix1

For VHDL, generates the bitwise AND operator
operating on a set of individual slices

For Verilog, generates the reduce operator:

&a[lidx:ridx]

bitandreduce

bitcmp(a) Bitwise complement bitcmp
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MATLAB Function
Block Syntax

Description See Also

bitconcat(a, b)
bitconcat([a_vector])
bitconcat(a,
b,c,d,...)

Concatenate fixed-point operands.

Operands can be of different signs.

Output data type: ufixN, where N is the sum of
the word lengths of a and b.

For VHDL, generates the concatenation
operator: (a & b)

For Verilog, generates the concatenation
operator: {a , b}

bitconcat

bitget(a,idx) Access a bit at position idx.

For VHDL, generates the slice operator: a(idx)

For Verilog, generates the slice operator:
a[idx]

bitget

bitor(a, b) Bitwise OR bitor

bitorreduce(a, lidx,
ridx)

Bitwise OR of a field of consecutive bits within
a. The field is delimited by lidx and ridx.

Output data type: ufix1

For VHDL, generates the bitwise OR operator
operating on a set of individual slices.

For Verilog, generates the reduce operator:

|a[lidx:ridx]

bitorreduce

bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

bitreplicate(a, n) Concatenate bits of fi object a n times bitreplicate
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MATLAB Function
Block Syntax

Description See Also

bitrol(a, idx) Rotate left.

idx must be a positive integer. The value of idx
can be greater than the word length of a. idx is
always normalized to mod(idx, wlen) , where
wlen is the word length of a.

For VHDL, generates the rol operator.

For Verilog, generates the following expression
(where wl is the word length of a:

a << idx || a >> wl - idx

bitrol

bitror(a, idx) Rotate right.

idx must be a positive integer. The value of idx
can be greater than the word length of a. idx is
always normalized to mod(idx, wlen) , where
wlen is the word length of a.

For VHDL, generates the ror operator.

For Verilog, generates the following expression
(where wl is the word length of a:

a >> idx || a << wl - idx

bitror

bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset
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MATLAB Function
Block Syntax

Description See Also

bitshift(a, idx) Note: for efficient HDL code generation use, use
bitsll, bitsrl, or bitsra instead of bitshift.

Shift left or right, based on the positive or
negative integer value of‘idx.

idx must be an integer.

For positive values of idx, shift left idx bits.

For negative values of idx, shift right idx bits.

If idx is a variable, generated code contains
logic for both left shift and right shift.

Result values saturate if the overflowMode of a
is set to saturate.

bitshift

bitsliceget(a, lidx,
ridx)

Access consecutive set of bits from lidx to ridx.

Output data type: ufixN, where N =
lidx-ridix+1.

bitsliceget

bitsll(a, idx) Shift left logical.

idx must be a scalar within the range

0 <= idx < wl

where wl is the word length of a.

Overflow and rounding modes of input operand
a are ignored.

Generates sll operator in VHDL.

Generates << operator in Verilog.

bitsll
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MATLAB Function
Block Syntax

Description See Also

bitsra(a, idx) Shift right arithmetic.

idx must be a scalar within the range

0 <= idx < wl

where wl is the word length of a,

Overflow and rounding modes of input operand
a are ignored.

Generates sra operator in VHDL.

Generates >>> operator in Verilog.

bitsra

bitsrl(a, idx) Shift right logical.

idx must be a scalar within the range

0 <= idx < wl

where wl is the word length of a.

Overflow and rounding modes of input operand
a are ignored.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

bitsrl

bitxor(a, b) Bitwise XOR bitxor

bitxorreduce(a, lidx,
ridx)

Bitwise XOR reduction.

Bitwise XOR of a field of consecutive bits within
a. The field is delimited by lidx and ridx.

Output data type: ufix1

For VHDL, generates a set of individual slices.

For Verilog, generates the reduce operator:

^a[lidx:ridx]

bitxorreduce
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MATLAB Function
Block Syntax

Description See Also

getlsb(a) Return value of LSB. getlsb

getmsb(a) Return value of MSB. getmsb

Bit Slice and Bit Concatenation Functions
This section shows you how to use the functions bitsliceget and bitconcat
to access and manipulate bit slices (fields) in a fixed-point or integer word.
As an example, consider the operation of swapping the upper and lower 4-bit
nibbles of an 8-bit byte. The following example accomplishes this without
resorting to traditional mask-and-shift techniques.

function y = fcn(u)
% NIBBLE SWAP
y = bitconcat(

bitsliceget(u, 4, 1),
bitsliceget(u, 8, 5));

The bitsliceget and bitconcat functions map directly to slice and concat
operators in both VHDL and Verilog.

The following listing shows the corresponding generated VHDL code.

ENTITY fcn IS
PORT (

clk : IN std_logic;
clk_enable : IN std_logic;
reset : IN std_logic;
u : IN std_logic_vector(7 DOWNTO 0);
y : OUT std_logic_vector(7 DOWNTO 0));

END nibble_swap_7b;

ARCHITECTURE fsm_SFHDL OF fcn IS

BEGIN
-- NIBBLE SWAP
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y <= u(3 DOWNTO 0) & u(7 DOWNTO 4);
END fsm_SFHDL;

The following listing shows the corresponding generated Verilog code.

module fcn (clk, clk_enable, reset, u, y );
input clk;
input clk_enable;
input reset;
input [7:0] u;
output [7:0] y;

// NIBBLE SWAP
assign y = {u[3:0], u[7:4]};

endmodule

Shift and Rotate Functions
The MATLAB Function block supports shift and rotate functions that mimic
HDL-specific operators without saturation and rounding logic.

The following code implements a barrel shifter/rotator that performs a selected
operation (based on the mode argument) on a fixed point input operand.

function y = fcn(u, mode)
% Multi Function Barrel Shifter/Rotator

% fixed width shift operation
fixed_width = uint8(3);

switch mode
case 1

% shift left logical
y = bitsll(u, fixed_width);

case 2
% shift right logical
y = bitsrl(u, fixed_width);

case 3
% shift right arithmetic
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y = bitsra(u, fixed_width);
case 4

% rotate left
y = bitrol(u, fixed_width);

case 5
% rotate right
y = bitror(u, fixed_width);

otherwise
% do nothing
y = u;

end

In VHDL code generated for this function, the shift and rotate functions map
directly to shift and rotate instructions in VHDL.

CASE mode IS
WHEN "00000001" =>

-- shift left logical
--'<S2>:1:8'
cr := signed(u) sll 3;
y <= std_logic_vector(cr);

WHEN "00000010" =>
-- shift right logical
--'<S2>:1:11'
b_cr := signed(u) srl 3;
y <= std_logic_vector(b_cr);

WHEN "00000011" =>
-- shift right arithmetic
--'<S2>:1:14'
c_cr := SHIFT_RIGHT(signed(u) , 3);
y <= std_logic_vector(c_cr);

WHEN "00000100" =>
-- rotate left
--'<S2>:1:17'
d_cr := signed(u) rol 3;
y <= std_logic_vector(d_cr);

WHEN "00000101" =>
-- rotate right
--'<S2>:1:20'
e_cr := signed(u) ror 3;
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y <= std_logic_vector(e_cr);
WHEN OTHERS =>

-- do nothing
--'<S2>:1:23'
y <= u;

END CASE;

The corresponding Verilog code is similar, except that Verilog does not have
native operators for rotate instructions.

case ( mode)
1 :

begin
// shift left logical
//'<S2>:1:8'
cr = u <<< 3;
y = cr;

end
2 :

begin
// shift right logical
//'<S2>:1:11'
b_cr = u >> 3;
y = b_cr;

end
3 :

begin
// shift right arithmetic
//'<S2>:1:14'
c_cr = u >>> 3;
y = c_cr;

end
4 :

begin
// rotate left
//'<S2>:1:17'
d_cr = {u[12:0], u[15:13]};
y = d_cr;

end
5 :
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begin
// rotate right
//'<S2>:1:20'
e_cr = {u[2:0], u[15:3]};
y = e_cr;

end
default :

begin
// do nothing
//'<S2>:1:23'
y = u;

end
endcase
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Using Complex Signals

In this section...

“Introduction” on page 13-44

“Declaring Complex Signals” on page 13-44

“Conversion Between Complex and Real Signals” on page 13-46

“Arithmetic Operations on Complex Numbers” on page 13-46

“Support for Vectors of Complex Numbers” on page 13-50

“Other Operations on Complex Numbers” on page 13-51

Introduction
This section describes MATLAB Function block support for complex data
types for HDL code generation. See also the eml_hdl_design_patterns
library for numerous examples showing HDL related applications of complex
arithmetic in MATLAB Function blocks.

Declaring Complex Signals
The following MATLAB Function block code declares several local complex
variables. x and y are declared by complex constant assignment; z is created
using the using the complex() function.

function [x,y,z] = fcn

% create 8 bit complex constants

x = uint8(1 + 2i);

y = uint8(3 + 4j);

z = uint8(complex(5, 6));

The following code example shows VHDL code generated from the previous
MATLAB Function block code.

ENTITY complex_decl IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;
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reset : IN std_logic;

x_re : OUT std_logic_vector(7 DOWNTO 0);

x_im : OUT std_logic_vector(7 DOWNTO 0);

y_re : OUT std_logic_vector(7 DOWNTO 0);

y_im : OUT std_logic_vector(7 DOWNTO 0);

z_re : OUT std_logic_vector(7 DOWNTO 0);

z_im : OUT std_logic_vector(7 DOWNTO 0));

END complex_decl;

ARCHITECTURE fsm_SFHDL OF complex_decl IS

BEGIN

x_re <= std_logic_vector(to_unsigned(1, 8));

x_im <= std_logic_vector(to_unsigned(2, 8));

y_re <= std_logic_vector(to_unsigned(3, 8));

y_im <= std_logic_vector(to_unsigned(4, 8));

z_re <= std_logic_vector(to_unsigned(5, 8));

z_im <= std_logic_vector(to_unsigned(6, 8));

END fsm_SFHDL;

As shown in the example, all complex inputs, outputs and local variables
declared in MATLAB Function block code expand into real and imaginary
signals. The naming conventions for these derived signals are:

• Real components have the same name as the original complex signal,
suffixed with the default string '_re' (for example, x_re). To specify
a different suffix, set the Complex real part postfix option (or the
corresponding ComplexRealPostfix CLI property).

• Imaginary components have the same name as the original complex
signal, suffixed with the string '_im' (for example, x_im). To specify a
different suffix, set the Complex imaginary part postfix option (or the
corresponding ComplexImagPostfix CLI property).

A complex variable declared in a MATLAB Function block remains complex
during the entire length of the program.
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Conversion Between Complex and Real Signals
The MATLAB Function block provides access to the fields of a complex signal
via the real() and imag() functions, as shown in the following code.

function [Re_part, Im_part]= fcn(c)

% Output real and imaginary parts of complex input signal

Re_part = real(c);

Im_part = imag(c);

The coder supports these constructs, accessing the corresponding real and
imaginary signal components in generated HDL code. In the following Verilog
code example, the MATLAB Function block complex signal variable c is
flattened into the signals c_re and c_im. Each of these signals is assigned to
the output variables Re_part and Im_part, respectively.

module Complex_To_Real_Imag (clk, clk_enable, reset, c_re, c_im, Re_part, Im_part );

input clk;

input clk_enable;

input reset;

input [3:0] c_re;

input [3:0] c_im;

output [3:0] Re_part;

output [3:0] Im_part;

// Output real and imaginary parts of complex input signal

assign Re_part = c_re;

assign Im_part = c_im;

Arithmetic Operations on Complex Numbers
When generating HDL code for the MATLAB Function block, the coder
supports the following arithmetic operators for complex numbers composed of
all base types (integer, fixed-point, double):

• Addition (+)

• Subtraction (-)

• Multiplication (*)
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The coder supports division only for the Fixed-Point Toolbox divide function
(see divide). The divide function is supported only if the base type of both
complex operands is fixed-point.

As shown in the following example, the default sum and product mode
for fixed-point objects is FullPrecsion, and the CastBeforeSum property
defaults to true.

fm = hdlfimath

fm =

RoundMode: floor

OverflowMode: wrap

ProductMode: FullPrecision

MaxProductWordLength: 128

SumMode: FullPrecision

MaxSumWordLength: 128

CastBeforeSum: true

Given fixed-point operands, the coder follows full-precision cast before sum
semantics. Each addition or subtraction increases the result width by one bit.
Further casting is necessary to bring the results back to a smaller bit width.

In the following example function, two complex operands (with real and
imaginary ufix4 components) are summed, with a complex result having
real and imaginary ufix5 components. The result is then cast back to the
original bit width.

function z = fcn(x, y)

% addition of two complex numbers x,y of type 'ufix4'

% x+y will have'ufix5' type

z = x+y;

% to cast the result back to 'ufix4'

% z = fi(x + y, numerictype(x), fimath(x));

The following example shows VHDL code generated from this function.
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ENTITY complex_add_entity IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

x_re : IN std_logic_vector(3 DOWNTO 0);

x_im : IN std_logic_vector(3 DOWNTO 0);

y_re : IN std_logic_vector(3 DOWNTO 0);

y_im : IN std_logic_vector(3 DOWNTO 0);

z_re : OUT std_logic_vector(4 DOWNTO 0);

z_im : OUT std_logic_vector(4 DOWNTO 0));

END complex_add_entity;

ARCHITECTURE fsm_SFHDL OF complex_add_entity IS

BEGIN

-- addition of two complex numbers x,y of type 'ufix4'

-- x+y will have'ufix5' type

z_re <= std_logic_vector(resize(unsigned(x_re), 5) +

resize(unsigned(y_re), 5));

z_im <= std_logic_vector(resize(unsigned(x_im), 5) +

resize(unsigned(y_im), 5));

-- to cast the result back to 'ufix4' use

-- z = fi(x + y, numerictype(x), fimath(x));

END fsm_SFHDL;

Similarly, for the product operation in FullPrecision mode, the result bit
width increases to the sum of the lengths of the individual operands. Further
casting is necessary to bring the results back to a smaller bit width.

The following example function shows how the product of two complex
operands (with real and imaginary ufix4 components) can be cast back to
the original bit width.

function z = fcn(x, y)

% Multiplication of two complex numbers x,y of type 'ufix4'
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% x*y will have'ufix8' type

z = x * y;

% to cast the result back to 'ufix4'

% z = fi(x * y, numerictype(x), fimath(x));

The following example shows VHDL code generated from this function.

ENTITY complex_mul IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

x_re : IN std_logic_vector(3 DOWNTO 0);

x_im : IN std_logic_vector(3 DOWNTO 0);

y_re : IN std_logic_vector(3 DOWNTO 0);

y_im : IN std_logic_vector(3 DOWNTO 0);

z_re : OUT std_logic_vector(8 DOWNTO 0);

z_im : OUT std_logic_vector(8 DOWNTO 0));

END complex_mul;

ARCHITECTURE fsm_SFHDL OF complex_mul IS

SIGNAL pr1 : unsigned(7 DOWNTO 0);

SIGNAL pr2 : unsigned(7 DOWNTO 0);

SIGNAL pr1in : unsigned(8 DOWNTO 0);

SIGNAL pr2in : unsigned(8 DOWNTO 0);

SIGNAL pre : unsigned(8 DOWNTO 0);

SIGNAL pi1 : unsigned(7 DOWNTO 0);

SIGNAL pi2 : unsigned(7 DOWNTO 0);

SIGNAL pi1in : unsigned(8 DOWNTO 0);

SIGNAL pi2in : unsigned(8 DOWNTO 0);

SIGNAL pim : unsigned(8 DOWNTO 0);

BEGIN

-- addition of two complex numbers x,y of type 'ufix4'

-- x*y will have'ufix8' type

pr1 <= unsigned(x_re) * unsigned(y_re);

pr2 <= unsigned(x_im) * unsigned(y_im);
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pr1in <= resize(pr1, 9);

pr2in <= resize(pr2, 9);

pre <= pr1in - pr2in;

pi1 <= unsigned(x_re) * unsigned(y_im);

pi2 <= unsigned(x_im) * unsigned(y_re);

pi1in <= resize(pi1, 9);

pi2in <= resize(pi2, 9);

pim <= pi1in + pi2in;

z_re <= std_logic_vector(pre);

z_im <= std_logic_vector(pim);

-- to cast the result back to 'ufix4'

-- z = fi(x * y, numerictype(x), fimath(x));

END fsm_SFHDL;

Support for Vectors of Complex Numbers
MATLAB Function block supports HDL code generation for vectors of complex
numbers. Like scalar complex numbers, vectors of complex numbers are
flattened down to vectors of real and imaginary parts in generated HDL code.

For example in the following script t is a complex vector variable of base
type ufix4 and size [1,2].

function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

In the generated HDL code the variable t is broken down into real and
imaginary parts with the same two-element array. .

VARIABLE t_re : vector_of_unsigned4(0 TO 3);

VARIABLE t_im : vector_of_unsigned4(0 TO 3);

The real and imaginary parts of the complex number have the same vector of
type ufix4, as shown in the following code.

TYPE vector_of_unsigned4 IS ARRAY (NATURAL RANGE <>) OF unsigned(3 DOWNTO 0);

13-50



Using Complex Signals

All complex vector-based operations (+,-,* etc.,) are similarly broken down to
vectors of real and imaginary parts. Operations are performed independently
on all the elements of such vectors, following MATLAB semantics for vectors
of complex numbers.

In both VHDL and Verilog code generated for the MATLAB Function block,
complex vector ports are always flattened. If complex vector variables appear
on inputs and outputs, real and imaginary vector components are further
flattened to scalars.

In the following code, u1 and u2 are scalar complex numbers and y is a vector
of complex numbers.

function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

This generates the following port declarations in a VHDL entity definition.

ENTITY _MATLAB_Function IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

u1_re : IN vector_of_std_logic_vector4(0 TO 1);

u1_im : IN vector_of_std_logic_vector4(0 TO 1);

u2_re : IN vector_of_std_logic_vector4(0 TO 1);

u2_im : IN vector_of_std_logic_vector4(0 TO 1);

y_re : OUT vector_of_std_logic_vector32(0 TO 3);

y_im : OUT vector_of_std_logic_vector32(0 TO 3));

END _MATLAB_Function;

Other Operations on Complex Numbers
The coder supports the following functions with complex operands:

• complex

• real

• imag
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• conj

• transpose

• ctranspose

• isnumeric

• isreal

• isscalar

The isreal function, which always returns 0 for complex numbers, is
particularly useful for writing functions that behave differently based on
whether the input is a complex or real signal.

function y = fcn(u)

% output is same as input if 'u' is real

% output is conjugate of input if 'u' is complex

if isreal(u)

y = u;

else

y = conj(u);

end

For detailed information on these functions, see “Functions Supported for
Code Acceleration and Code Generation from MATLAB” in the Fixed-Point
Toolbox documentation.
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Distributed Pipeline Insertion for MATLAB Function Blocks

In this section...

“Overview” on page 13-53

“Example: Multiplier Chain” on page 13-53

Overview
Distributed pipeline insertion is a special optimization for HDL code generated
from MATLAB Function blocks or Stateflow charts. Distributed pipeline
insertion lets you achieve higher clock rates in your HDL applications, at the
cost of some amount of latency caused by the introduction of pipeline registers.

For general information on distributed pipeline insertion, including
limitations, see “DistributedPipelining” on page 5-75.

Example: Multiplier Chain
This section examines distributed pipeline insertion as applied to a simple
model that implements a chain of 5 multiplications. If you are unfamiliar
with block implementation parameters, seeChapter 4, “Specifying Block
Implementations and Parameters for HDL Code Generation” before studying
this example.

The example model is available in the demos folder as
MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\mpipe_multchain.mdl.

The root level model contains a subsystem multi_chain . The multi_chain
subsystem functions as the device under test (DUT) from which HDL code
is generated. The subsystem drives a MATLAB Function block, mult8. The
following figure shows the subsystem.
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The following figure shows a chain of multiplications as coded in the mult8
MATLAB Function block:

function y = fcn(x1,x2,x3,x4,x5,x6,x7,x8)
% A chained multiplication:
% y = (x1*x2)*(x3*x4)*(x5*x6)*(x7*x8)

y1 = x1 * x2;
y2 = x3 * x4;
y3 = x5 * x6;
y4 = x7 * x8;
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y5 = y1 * y2;
y6 = y3 * y4;

y = y5 * y6;

To apply distributed pipeline insertion to this block, use the HDL Properties
dialog box for the mult8 block. Specify generation of two pipeline stages for the
MATLAB Function block, and enable the distributed pipeline optimization:

In the Configuration Parameters dialog box, the top-level HDL Code
Generation options specify that:

• VHDL code is generated from the subsystem
mpipe_multchain/mult_chain.

• The coder will generate code and display the generated model.

The insertion of two pipeline stages into the generated HDL code results in
a latency of two clock cycles. In the generated model, a delay of two clock
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cycles is inserted before the output of the mpipe_multchain/mult_chain/mult8
subsystem. This ensures that simulations of the model accurately reflect the
behavior of the generated HDL code. The following figure shows the inserted
Integer Delay block.

The following listing shows the complete architecture section of the generated
code. Comments generated by the coder indicate the pipeline register
definitions.

ARCHITECTURE fsm_SFHDL OF mult8 IS

SIGNAL pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL b_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL c_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL d_pipe_var_0_1 : signed(7 DOWNTO 0); -- Pipeline reg from stage 0 to stage 1

SIGNAL pipe_var_1_2 : signed(7 DOWNTO 0); -- Pipeline reg from stage 1 to stage 2
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SIGNAL b_pipe_var_1_2 : signed(7 DOWNTO 0); -- Pipeline reg from stage 1 to stage 2

SIGNAL pipe_var_0_1_next : signed(7 DOWNTO 0);

SIGNAL b_pipe_var_0_1_next : signed(7 DOWNTO 0);

SIGNAL c_pipe_var_0_1_next : signed(7 DOWNTO 0);

SIGNAL d_pipe_var_0_1_next : signed(7 DOWNTO 0);

SIGNAL pipe_var_1_2_next : signed(7 DOWNTO 0);

SIGNAL b_pipe_var_1_2_next : signed(7 DOWNTO 0);

SIGNAL y1 : signed(7 DOWNTO 0);

SIGNAL y2 : signed(7 DOWNTO 0);

SIGNAL y3 : signed(7 DOWNTO 0);

SIGNAL y4 : signed(7 DOWNTO 0);

SIGNAL y5 : signed(7 DOWNTO 0);

SIGNAL y6 : signed(7 DOWNTO 0);

SIGNAL mul_temp : signed(15 DOWNTO 0);

SIGNAL mul_temp_0 : signed(15 DOWNTO 0);

SIGNAL mul_temp_1 : signed(15 DOWNTO 0);

SIGNAL mul_temp_2 : signed(15 DOWNTO 0);

SIGNAL mul_temp_3 : signed(15 DOWNTO 0);

SIGNAL mul_temp_4 : signed(15 DOWNTO 0);

SIGNAL mul_temp_5 : signed(15 DOWNTO 0);

BEGIN

initialize_mult8 : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

pipe_var_0_1 <= to_signed(0, 8);

b_pipe_var_0_1 <= to_signed(0, 8);

c_pipe_var_0_1 <= to_signed(0, 8);

d_pipe_var_0_1 <= to_signed(0, 8);

pipe_var_1_2 <= to_signed(0, 8);

b_pipe_var_1_2 <= to_signed(0, 8);

ELSIF clk'EVENT AND clk= '1' THEN

IF clk_enable= '1' THEN

pipe_var_0_1 <= pipe_var_0_1_next;

b_pipe_var_0_1 <= b_pipe_var_0_1_next;

c_pipe_var_0_1 <= c_pipe_var_0_1_next;

d_pipe_var_0_1 <= d_pipe_var_0_1_next;

pipe_var_1_2 <= pipe_var_1_2_next;

b_pipe_var_1_2 <= b_pipe_var_1_2_next;

END IF;
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END IF;

END PROCESS initialize_mult8;

-- This block supports an embeddable subset of the MATLAB language.

-- See the help menu for details.

--y = (x1+x2)+(x3+x4)+(x5+x6)+(x7+x8);

mul_temp <= signed(x1) * signed(x2);

y1 <= "01111111" WHEN (mul_temp(15) = '0') AND (mul_temp(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp(15) = '1') AND (mul_temp(14 DOWNTO 7) /= "11111111")

ELSE mul_temp(7 DOWNTO 0);

mul_temp_0 <= signed(x3) * signed(x4);

y2 <= "01111111" WHEN (mul_temp_0(15) ='0') AND (mul_temp_0(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_0(15) = '1') AND (mul_temp_0(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_0(7 DOWNTO 0);

mul_temp_1 <= signed(x5) * signed(x6);

y3 <= "01111111" WHEN (mul_temp_1(15) = '0') AND (mul_temp_1(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_1(15) = '1') AND (mul_temp_1(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_1(7 DOWNTO 0);

mul_temp_2 <= signed(x7) * signed(x8);

y4 <= "01111111" WHEN (mul_temp_2(15)= '0')AND (mul_temp_2(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_2(15) = '1') AND (mul_temp_2(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_2(7 DOWNTO 0);

mul_temp_3 <= pipe_var_0_1 * b_pipe_var_0_1;

y5 <= "01111111" WHEN (mul_temp_3(15) = '0') AND (mul_temp_3(14 DOWNTO 7)/= "00000000")

ELSE "10000000" WHEN (mul_temp_3(15) = '1') AND (mul_temp_3(14 DOWNTO 7) /= "11111111")

ELSE mul_temp_3(7 DOWNTO 0);

mul_temp_4 <= c_pipe_var_0_1 * d_pipe_var_0_1;

y6 <= "01111111" WHEN (mul_temp_4(15)='0') AND (mul_temp_4(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_4(15) = '1') AND (mul_temp_4(14 DOWNTO 7) /= "11111111")
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ELSE mul_temp_4(7 DOWNTO 0);

mul_temp_5 <= pipe_var_1_2 * b_pipe_var_1_2;

y <= "01111111" WHEN (mul_temp_5(15) = '0') AND (mul_temp_5(14 DOWNTO 7) /= "00000000")

ELSE "10000000" WHEN (mul_temp_5(15) = '1') AND (mul_temp_5(14 DOWNTO 7) /= "11111111")

ELSE std_logic_vector(mul_temp_5(7 DOWNTO 0));

b_pipe_var_1_2_next <= y6;

pipe_var_1_2_next <= y5;

d_pipe_var_0_1_next <= y4;

c_pipe_var_0_1_next <= y3;

b_pipe_var_0_1_next <= y2;

pipe_var_0_1_next <= y1;

END fsm_SFHDL;
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Recommended Practices

In this section...

“Introduction” on page 13-60

“Use Compiled External Functions With MATLAB Function Blocks” on
page 13-60

“Build the MATLAB Function Block Code First” on page 13-60

“Use the hdlfimath Utility for Optimized FIMATH Settings” on page 13-61

“Use Optimal Fixed-Point Option Settings” on page 13-63

Introduction
This section describes recommended practices when using the MATLAB
Function block for HDL code generation.

By setting MATLAB Function block options as described in this section, you
can significantly increase the efficiency of generated HDL code. See “Setting
Optimal Fixed-Point Options for the MATLAB Function Block” on page 13-9
for an example.

Use Compiled External Functions With MATLAB
Function Blocks
The coder supports HDL code generation from MATLAB Function blocks that
include compiled external functions. This feature lets you write reusable
MATLAB code and call it from multiple MATLAB Function blocks.

Such functions must be defined in files that are on the MATLAB Function
block path, and must include the %#codegen compilation directive. See
“Adding the Compilation Directive %#codegen” for information on how to
create, compile, and invoke external functions.

Build the MATLAB Function Block Code First
Before generating HDL code for a subsystem containing a MATLAB Function
block, it is strongly recommended that you build the MATLAB Function Block
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code to check for errors. To build the code, select Build from the Tools menu
in the MATLAB Function Block Editor (or press CTRL+B).

Use the hdlfimath Utility for Optimized FIMATH
Settings
The hdlfimath.m function is a utility that defines a FIMATH specification
that is optimized for HDL code generation. It is strongly recommended that
you replace the defaultMATLAB Function block fimath specification with
a call to the hdlfimath function, as shown in the following figure.
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The following listing shows the FIMATH setting defined by hdlfimath.

hdlfm = fimath(...

'RoundMode', 'floor',...

'OverflowMode', 'wrap',...

'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...

'SumMode', 'FullPrecision', 'SumWordLength', 32,...

'CastBeforeSum', true);
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Note Use of 'floor' rounding mode for signed integer division will cause an
error at code generation time. The HDL division operator does not support
'floor' rounding mode. Use 'round' mode, or else change the signed
integer division operations to unsigned integer division.

Note When the FIMATH OverflowMode property of the FIMATH specification
is set to 'Saturate', HDL code generation is disallowed for the following
cases:

• SumMode is set to 'SpecifyPrecision'

• ProductMode is set to 'SpecifyPrecision'

Use Optimal Fixed-Point Option Settings
Use the default (Fixed-point) setting for the Treat these inherited signal
types as fi objects option , as shown in the following figure.
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Language Support

In this section...

“Fixed-Point Runtime Library Support” on page 13-65

“Variables and Constants” on page 13-66

“Use of Nontunable Parameter Arguments” on page 13-69

“Arithmetic Operators” on page 13-70

“Relational Operators” on page 13-71

“Logical Operators” on page 13-71

“Control Flow Statements” on page 13-72

Fixed-Point Runtime Library Support
The coder supports most of the fixed-point runtime library functions supported
by the MATLAB Function block. For a complete list of these functions, see
“Functions Supported for Code Acceleration and Code Generation from
MATLAB” in the Fixed-Point Toolbox documentation.

Some functions are not supported, or are subject to some restrictions. These
functions are summarized in the following table.

Function Restriction Notes

disp Not supported

get Not supported This function returns a
struct. Struct data types
are not supported in this
release.

pow2 Not supported

real Not supported

divide Supported, with
restrictions

The divisor must be a
constant and a power of
two.
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Function Restriction Notes

subsasgn Supported, with
restrictions

Subscripted assignment
supported; see “Data Type
Usage” on page 13-66

subsref Supported, with
restrictions

Subscripted reference
supported; see “Data Type
Usage” on page 13-66

Variables and Constants
This section summarizes supported data types and typing rules for variable
and constants, and the use of persistent variables in modeling registers.

Data Type Usage
When generating code for the MATLAB Function block, the coder supports a
subset of MATLAB data types. The following table summarizes supported
and unsupported data types.

Type(s) Support Notes

Integer Supported:

• uint8, uint16, uint32,

• int8, int16, int32

Real Supported:

• double

• single

HDL code generated with double
or single data types is not
synthesizable.

Character Supported:
char

Logical Supported:

Boolean

13-66



Language Support

Type(s) Support Notes

Fixed point Supported:

• Scaled (binary point only) fixed
point numbers

• Custom integers (zero binary
point)

Fixed point numbers with slope (not
equal to 1.0) and bias (not equal to
0.0) are not supported.

Maximum word size for fixed-point
numbers is 32 bits.

Vectors Supported:

• unordered {N}

• row {1, N}

• column {N, 1}

The maximum number of vector
elements allowed is 2^32.

A variable must be fully defined
before it is subscripted.

Matrix N/A Matrix data types are not supported
in the current release.

Struct N/A Struct data types are not supported in
the current release.

Cell arrays N/A Cell arrays are not supported in the
current release.

Typing Ports, Variables and Constants
Strong typing rules are applied to MATLAB Function blocks, as follows:

• All input and output port data types must be resolved at model compilation
time.

- If the data type of an input port is unspecified when the model is
compiled, the port is assigned the data type of the signal driving the port.

- If the data type of an output port is unspecified when the model
is compiled, the output port type is type is determined by the first
assignment to the output variable.

• Similarly, all constant literals are strongly typed. If you do not specify
the data type of a constant explicitly, its type is determined by internal
rules. To specify the data type of a constant, use cast functions (e.g., uint8,
uint16, etc.) or fi functions using fimath specifications.
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• After you have defined a variable, do not change its data type. Variable
types cannot be changed dynamically by assigning a different value.
Dynamic typing will lead to a compile time error.

• After you have defined a variable, do not change its size. Variables cannot
be grown or resized dynamically.

• Do not use output variables to model registered output; MATLAB Function
block outputs are never persistent. Use persistent variables for this
purpose, as described in “Persistent Variables” on page 13-68.

Persistent Variables
Persistent variables let you model registers. If you need to preserve state
between invocations of a MATLAB Function block, use persistent variables.

Each persistent variable must be initialized with a statement specifying its
size and type before it is referenced. You can initialize a persistent variable
with either a constant value or a variable, as in the following code listings:

% Initialize with a constant
persistent p;
if isempty(p)

p = fi(0,0,8,0);
end

% Initialize with a variable
initval = fi(0,0,8,0);

persistent p;
if isempty(p)

p = initval;
end

When testing whether a persistent variable has been initialized, it is good
practice to use simple logical expressions, as in the preceding examples. Using
simple expressions ensures that the HDL code for the test is generated in the
reset process, and therefore is executed only once.

You can initialize multiple variables based on a single simple logical
expression, as in the following example:
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% Initialize with variables
initval1 = fi(0,0,8,0);
initval2 = fi(0,0,7,0);

persistent p;
if isempty(p)

x = initval1;
y = initval2;

end

See also “The Incrementer Function Code” on page 13-5 for an example of the
initialization and use of a persistent variable.

Note If persistent variables are not initialized properly, unnecessary
sentinel variables can appear in the generated code.

Limitation on Use of Persistent Variables. As described in “Using
Persistent Variables to Model State” on page 13-26, you can use persistent
variables to simulate various kinds of delay blocks.

However, note that the ports on the MATLAB Function block act as direct
feedthrough ports during simulation. The delay constructs internal to the
MATLAB Function block are not recognized during simulation. Therefore a
feedback loop in the model causes an algebraic loop condition.

To work around this limitation:

• Keep the combinatorial logic inside the MATLAB Function block for one
of the blocks in the loop which has a persistent variable for the output or
input. Remove the persistent variable.

• Place a Unit Delay block external to the MATLAB Function block.

Use of Nontunable Parameter Arguments
You can declare a parameter argument for a MATLAB Function block by
setting its Scope to Parameter in the Ports and Data Manager GUI. Such a
parameter argument does not appear as a signal port on the block. Parameter
arguments for MATLAB Function blocks do not take their values from signals
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in the Simulink model. Instead, their values come from parameters defined in
a parent Simulink masked subsystem or variables defined in the MATLAB
base workspace.

Only nontunable parameters are supported for HDL code generation. If
you declare parameter arguments in MATLAB Function block code that is
intended for HDL code generation, be sure to clear the Tunable option for
each such parameter argument.

See also “Parameter Arguments in MATLAB Function Block Functions” in
the Simulink documentation.

Arithmetic Operators
When generating code for the MATLAB Function block, the coder supports
the arithmetic operators (and equivalent MATLAB functions) listed in the
following table.

Operation Operator Syntax Equivalent Function Fixed Point
Support?Binary addition A+B plus(A,B) Y

Matrix multiplication A*B mtimes(A,B) Y

Arraywise multiplication A.*B times(A,B) Y

Matrix right division A/B mrdivide(A,B) Y

Arraywise right division A./B rdivide(A,B) Y

Matrix left division A\B mldivide(A,B) Y

Arraywise left division A.\B ldivide(A,B) Y

Matrix power A^B mpower(A,B) Y

Arraywise power A.^B power(A,B) Y

Complex transpose A' ctranspose(A) Y

Matrix transpose A.' transpose(A) Y
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Operation Operator Syntax Equivalent Function Fixed Point
Support?Matrix concat [A B] None Y

Matrix index
Note: A variable must
be fully defined before it
is subscripted.

A(r c) None Y

Relational Operators
When generating code for the MATLAB Function block, the coder supports
the relational operators (and equivalent MATLAB functions) listed in the
following table.

Relation Operator
Syntax

Equivalent
Function

Fixed-Point Support?

Less than A<B lt(A,B) Y

Less than or equal to A<=B le(A,B) Y

Greater than or
equal to

A>=B ge(A,B) Y

Greater than A>B gt(A,B) Y

Equal A==B eq(A,B) Y

Not equal A~=B ne(A,B) Y

Logical Operators
When generating code for the MATLAB Function block, the coder supports
the logical operators (and equivalent MATLAB functions) listed in the
following table.

Relation Operator
Syntax

M Function
Equivalent

Fixed-Point
Support?

Notes

Logical And A&B and(A,B) Y

Logical Or A|B or(A,B) Y
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Relation Operator
Syntax

M Function
Equivalent

Fixed-Point
Support?

Notes

Logical Xor A xor B xor(A,B) Y

Logical
And (short
circuiting)

A&&B N/A Y Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 13-72.

Logical
Or (short
circuiting)

A||B N/A Y Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 13-72.

Element
complement

~A not(A) Y

Control Flow Statements
When generating code for the MATLAB Function block, the coder imposes
some restrictions on the use of control flow statements and constructs.
The following table summarizes supported and unsupported control flow
statements.

Control Flow
Statement

Notes

break

continue

return

Do not use these statements within loops. Use of these statements
in a loop causes the coder to report an error.

Note that the following vector functions can generate loops containing
break statements:

• isequal

• bitrevorder

while while loops are not supported. Use of while loops causes the coder to
report the following error:

Unstructured flow graph or loop containing

[statement type] not supported for HDL
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Control Flow
Statement

Notes

for for loops without static bounds are not supported. Use of for loops
without static bounds causes the coder to report the following error:

Unstructured flow graph or loop containing

[statement type] not supported for HDL

Do not use the & and | operators within conditions of a for statement.
Instead, use the && and || operators.

The MATLAB Function block does not support nonscalar expressions
in the conditions of for statements. Use the all or any functions to
collapse logical vectors into scalars.

if Do not use the & and | operators within conditions of an if statement.
Instead, use the && and || operators.

The MATLAB Function block does not support nonscalar expressions
are not supported in the conditions of if statements. Use the all or
any functions to collapse logical vectors into scalars.

switch The HDL code matches the behavior of the switch statement; the
first matching case statement is executed.

Use only scalars in conditional expressions in a switch statement.

Use of fi variables in switch or case conditionals is not supported.
For HDL code generation, the usage is restricted to uint8, uint16,
uint32, sint8, sint16, and sint32.

If multiple case statements make assignments to the same variable,
then their numeric type and fimath specification should match that
variable.
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Other Limitations
This section lists other limitations that apply when generating HDL code with
the MATLAB Function block. These limitations are:

• The HDL compatibility checker (checkhdl) performs only a basic
compatibility check on the MATLAB Function block. HDL related warnings
or errors may arise during code generation from a MATLAB Function
block that is otherwise valid for simulation. Such errors are reported in a
separate message window.

• The MATLAB Function block does not support nested functions.
Subfunctions are supported, however. For an example, see “Tutorial
Example: Incrementer” on page 13-4.

• Use of multiple values on the left side of an expression is not supported.
For example, an error results from the following assignment statement:

[t1, t2, t3] = [1, 2, 3];
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Overview of Script Generation for EDA Tools
The coder supports generation of script files for third-party electronic design
automation (EDA) tools. These scripts let you compile and simulate generated
HDL code or synthesize generated HDL code.

Using the defaults, you can automatically generate scripts for the Mentor
Graphics ModelSim simulator.

Optionally, you can also generate scripts for a variety of synthesis tools.
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Defaults for Script Generation
By default, script generation takes place automatically, as part of the code
and test bench generation process.

The coder generates all script files in the target folder.

When you generate HDL code for a model or subsystem system, the coder
writes the following script files:

• system_compile.do: Mentor Graphics ModelSim compilation script.
This script contains commands to compile the generated code, but not to
simulate it.

When you generate test bench code for a model or subsystem system, the
coder writes the following script files:

• system_tb_compile.do: Mentor Graphics ModelSim compilation script.
This script contains commands to compile the generated code and test
bench.

• system_tb_sim.do: Mentor Graphics ModelSim simulation script. This
script contains commands to run a simulation of the generated code and
test bench.

By default, the coder does not generate a synthesis script. To enable synthesis
script generation, select a synthesis tool from the Choose synthesis tool
pulldown menu, as described in “Synthesis Script Options” on page 14-14.
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Custom Script Generation

In this section...

“Overview” on page 14-4

“Structure of Generated Script Files” on page 14-4

“Properties for Controlling Script Generation” on page 14-5

“Controlling Script Generation with the EDA Tool Scripts GUI Pane” on
page 14-9

Overview
You can enable or disable script generation and customize the names and
content of generated script files using either of the following methods:

• Use the makehdl or makehdltb functions, and pass in the appropriate
property name/property value arguments, as described in “Properties for
Controlling Script Generation” on page 14-5.

• Set script generation options in the EDA Tool Scripts pane of the
Simulink GUI, as described in “Controlling Script Generation with the
EDA Tool Scripts GUI Pane” on page 14-9.

Structure of Generated Script Files
A generated EDA script consists of three sections, generated and executed
in the following order:

1 An initialization (Init) phase. The Init phase performs any required
setup actions, such as creating a design library or a project file. Some
arguments to the Init phase are implicit, for example, the top-level entity
or module name.

2 A command-per-file phase (Cmd). This phase of the script is called
iteratively, once per generated HDL file or once per signal. On each call, a
different file or signal name is passed in.

3 A termination phase (Term). This is the final execution phase of the script.
One application of this phase is to execute a simulation of HDL code that
was compiled in the Cmd phase. The Term phase takes no arguments.
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The coder generates scripts by passing format strings to the fprintf function.
Using the GUI options (or makehdl and makehdltb properties) summarized
in the following sections, you can pass in customized format strings to the
script generator. Some of these format strings take arguments, such as the
top-level entity or module name, or the names of the VHDL or Verilog files
in the design.

You can use any legal fprintf formatting characters. For example, '\n'
inserts a newline into the script file.

Properties for Controlling Script Generation
This section describes how to set properties in the makehdl or makehdltb
functions to enable or disable script generation and customize the names
and content of generated script files.

Enabling and Disabling Script Generation
The EDAScriptGeneration property controls the generation of script files. By
default, EDAScriptGeneration is set 'on'. To disable script generation, set
EDAScriptGeneration to 'off', as in the following example.

makehdl('sfir_fixed/symmetric_fir,'EDAScriptGeneration','off')

Customizing Script Names
When you generate HDL code, script names are generated by appending a
postfix string to the model or subsystem name system.

When you generate test bench code , script names are generated by appending
a postfix string to the test bench name testbench_tb.

The postfix string depends on the type of script (compilation, simulation,
or synthesis) being generated. The default postfix strings are shown in the
following table. For each type of script, you can define your own postfix using
the associated property.
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Script Type Property Default Value

Compilation 'HDLCompileFilePostfix' '_compile.do'

Simulation 'HDLSimFilePostfix' '_sim.do'

Synthesis 'HDLSynthFilePostfix' Depends on the selected
synthesis tool. See
SynthToolOption.

The following command generates VHDL code for the subsystem system,
specifying a custom postfix string for the compilation script. The name of the
generated compilation script will be system_test_compilation.do.

makehdl('mymodel/system', 'HDLCompileFilePostfix', '_test_compilation.do')

Customizing Script Code
Using the property name/property value pairs summarized in the following
table, you can pass in customized format strings to makehdl or makehdltb.
The properties are named according to the following conventions:

• Properties that apply to the initialization (Init) phase are identified by the
substring Init in the property name.

• Properties that apply to the command-per-file phase (Cmd) are identified by
the substring Cmd in the property name.

• Properties that apply to the termination (Term) phase are identified by the
substring Term in the property name.

Property Name and Default Description

Name: 'HDLCompileInit'

Default:'vlib %s\n'

Format string passed to fprintf to write the Init
section of the compilation script. The argument is
the contents of the 'VHDLLibraryName' property,
which defaults to'work'. You can override the
default Init string ('vlib work\n' by changing
the value of 'VHDLLibraryName'.

Name: 'HDLCompileVHDLCmd' Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
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Property Name and Default Description

Default: 'vcom %s %s\n'
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: 'HDLCompileVerilogCmd'

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name:'HDLCompileTerm'

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Name: 'HDLSimInit'

Default:

['onbreak resume\n',...
'onerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Name: 'HDLSimCmd'

Default: 'vsim -novopt work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

Name: 'HDLSimViewWaveCmd'

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command.
The implicit argument is the top-level module or
entity name.

Name: 'HDLSimTerm'

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script. The string is a
synthesis project creation command. The implicit
argument is the top-level module or entity name.
The content of the string is specific to the selected
synthesis tool. See SynthToolOption.
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Property Name and Default Description

Name: 'HDLSynthInit' Format string passed to fprintf to write the Init
section of the synthesis script. The content of the
string is specific to the selected synthesis tool. See
SynthToolOption.

Name: 'HDLSynthCmd' Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is the
file name of the entity or module.The content of
the string is specific to the selected synthesis tool.
See SynthToolOption.Name: 'HDLSynthTerm' Format string passed to fprintf to write the Term
section of the synthesis script. The content of the
string is specific to the selected synthesis tool. See
SynthToolOption.

Examples
The following example specifies a Mentor Graphics ModelSim command for
the Init phase of a compilation script for VHDL code generated from the
subsystem system.

makehdl(system, 'HDLCompileInit', 'vlib mydesignlib\n')

The following example lists the resultant script, system_compile.do.

vlib mydesignlib
vcom system.vhd

The following example specifies that the coder generate a Xilinx® ISE
synthesis file for the subsystem sfir_fixed/symmetric_fir.

makehdl('sfir_fixed/symmetric_fir','HDLSynthTool', 'ISE')
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The following listing shows the resultant script, symmetric_fir_ise.tcl.

set src_dir "./hdlsrc"
set prj_dir "synprj"
file mkdir ../$prj_dir
cd ../$prj_dir
project new symmetric_fir.ise
xfile add ../$src_dir/symmetric_fir.vhd
project set family Virtex4
project set device xc4vsx35
project set package ff668
project set speed -10
process run "Synthesize - XST"

Controlling Script Generation with the EDA Tool
Scripts GUI Pane
The EDA Tool Scripts pane of the GUI lets you set all options that control
generation of script files. These options correspond to the properties described
in “Properties for Controlling Script Generation” on page 14-5

To view and set EDA Tool Scripts options:

1 Open the Configuration Parameters dialog box.

2 Select the HDL Code Generation > EDA Tool Scripts pane.
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3 The Generate EDA scripts option controls the generation of script files.
By default, this option is selected.

If you want to disable script generation, clear this check box and click
Apply.

4 The list on the left of the EDA Tool Scripts pane lets you select from
several categories of options. Select a category and set the options as
desired. The categories are:

• Compilation script: Options related to customizing scripts for
compilation of generated VHDL or Verilog code. See “Compilation Script
Options” on page 14-11 for further information.
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• Simulation script: Options related to customizing scripts for HDL
simulators. See “Simulation Script Options” on page 14-12 for further
information.

• Synthesis script: Options related to customizing scripts for synthesis
tools. See “Synthesis Script Options” on page 14-14 for further
information.

Compilation Script Options
The following figure shows the Compilation script pane, with all options
set to their default values.

The following table summarizes the Compilation script options.
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Option and Default Description

Compile file postfix’

'_compile.do'

Postfix string appended to the DUT name or test bench
name to form the script file name.

Name: Compile initialization

Default:'vlib %s\n'

Format string passed to fprintf to write the Init
section of the compilation script. The argument is
the contents of the 'VHDLLibraryName' property,
which defaults to'work'. You can override the default
Init string ('vlib work\n' by changing the value of
'VHDLLibraryName'.Name: Compile command for VHDL

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
'SimulatorFlags' property option and the filename
of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: Compile command for
Verilog

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the filename of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: Compile termination

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Simulation Script Options
The following figure shows the Simulation script pane, with all options
set to their default values.
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The following table summarizes the Simulation script options.

Option and Default Description

Simulation file postfix

'_sim.do'

Postfix string appended to the model name or test
bench name to form the simulation script file name.

Simulation initialization

Default:

['onbreak resume\nonerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.
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Option and Default Description

Simulation command

Default: 'vsim -novopt work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

Simulation waveform viewing
command

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
top-level module or entity signal names are implicit
arguments.

Simulation termination

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script.

Synthesis Script Options
The following figure shows the Synthesis script pane, with all options set to
their default values. The Choose synthesis tool property defaults to None,
which disables generation of a synthesis script.
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To enable synthesis script generation, select a synthesis tool from the Choose
synthesis tool pulldown menu.

When you select a synthesis tool, the coder:

• Enables synthesis script generation.

• Enters a file name postfix (specific to the chosen synthesis tool) into the
Synthesis file postfix field.

• Enters strings (specific to the chosen synthesis tool) into the initialization,
command, and termination fields.
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The following figure shows the default option values entered for the Mentor
Graphics Precision tool.

The following table summarizes the Synthesis script options.
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Option Name Description

Choose synthesis tool
none (default): do not generate a synthesis script
ISE: generate a synthesis script for Xilinx ISE
Precision: generate a synthesis script for Mentor Graphics
Precision
Quartus: generate a synthesis script for Altera® Quartus II
Synplify: generate a synthesis script for Synopsys® Synplify
Pro®

Synthesis file postfix Your choice of synthesis tool sets the postfix for generated
synthesis file names to one of the following:

_ise.tcl
_precision.tcl
_quartus.tcl
_synplify.tcl

Synthesis initialization Format string passed to fprintf to write the Init section of
the synthesis script. The default string is a synthesis project
creation command. The implicit argument is the top-level
module or entity name. The content of the string is specific to
the selected synthesis tool.

Synthesis command Format string passed to fprintf to write the Cmd section of
the synthesis script. The argument is the filename of the
entity or module.The content of the string is specific to the
selected synthesis tool.

Synthesis termination Format string passed to fprintf to write the Term section of
the synthesis script.The content of the string is specific to
the selected synthesis tool.
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What Is the HDL Workflow Advisor?
The HDL Workflow Advisor is a tool that supports and integrates all stages of
the FPGA design process, such as:

• Checking the Simulink model for HDL code generation compatibility

• Automatically correcting model settings that are incompatible with HDL
code generation

• Generation of RTL code, RTL test bench, a cosimulation model, or any
combination of these

• Synthesis and timing analysis through integration with third-party
synthesis tools

• Back annotation of the Simulink model with critical path and other
information obtained during synthesis

• Complete automated workflows for selected FPGA development target
devices and xPC Target™
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HDL Workflow Advisor Compatibility with Third-Party
Tools

In this section...

“Supported Third-Party Synthesis Tools” on page 15-3

“Setting Up the Synthesis Tool Path” on page 15-3

Supported Third-Party Synthesis Tools
A supported synthesis tool must be installed, and the synthesis tool executable
must be on the system path, to perform the following tasks:

• Set Target Device and Synthesis Tool: selection of any target device
other than Generic ASIC/FPGA Target

• FPGA Synthesis and Analysis: any tasks in this category

The current version of the HDL Workflow Advisor is compatible with the
following third-party FPGA synthesis tools:

• Xilinx ISE 12.1

• Altera Quartus II 9.1

• Xilinx ISE 10.1 is supported only for compatibility with Speedgoat FPGA
target devices.

Speedgoat IO301, IO303, and IO311 FPGA IO boards, which use Xilinx
Virtex-II FPGAs, supported only by Xilinx ISE version 10.1 or earlier.
Before you select one of these Speedgoat devices in the Set Target Device
and Synthesis Tool task, make sure that you have installed Xilinx ISE
10.1. See also “Workflow for Speedgoat FPGA IO Boards and xPC Target”
on page 15-48 for more information.

Setting Up the Synthesis Tool Path
If you plan to use the HDL Workflow Advisor to automate one of the supported
third-party FPGA synthesis tools, use the hdlsetuptoolpath function to add
the necessary synthesis tool folders to the system path, and set up system
environment variables for the specified synthesis tool.
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The syntax and operation of hdlsetuptoolpath are as follows:

hdlsetuptoolpath ('ToolName', TOOLNAME, 'ToolPath', TOOLPATH)

The input property-value pairs are:

• 'ToolName', ['Xilinx ISE' | 'Altera Quartus II']: specify the
synthesis tool name.

• 'ToolPath','path': specify the full path to the synthesis tool executable.

For example, the following command sets the synthesis tool path to point to
an installed Xilinx ISE 12.1 executable.

hdlsetuptoolpath('ToolName','Xilinx ISE', ...
'ToolPath', 'C:\Xilinx\12.1\ISE_DS\ISE\bin\nt64\ise.exe');

Tip hdlsetuptoolpath changes the system path and system environment
variables for the current MATLAB session only. To execute hdlsetuptoolpath
automatically when MATLAB starts, add hdlsetuptoolpath to your
startup.m script.
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Starting the HDL Workflow Advisor
To start the HDL Workflow Advisor from a model:

1 Open your model.

2 From the Tools menu, select HDL Code Generation > HDL Workflow
Advisor.

3 In the System Selector window, select the DUT that you want to review. In
the following figure, the symmetric_fir subsystem is the selected DUT.

4 Click OK.

The HDL Workflow Advisor initializes and appears.
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To start the HDL Workflow Advisor from the command line, enter
hdladvisor(system), where system is a handle or name of the model or
subsystem that you want to check. For more information, see the hdladvisor
function reference page.
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Using the HDL Workflow Advisor Window
The following figure shows the top-level view of the HDL Workflow Advisor.
The left pane lists the folders in the HDL Workflow Advisor hierarchy. Each
folder represents a group or category of related tasks.

15-7



15 Using the HDL Workflow Advisor

Expanding the folders shows available tasks in each folder. The following
figure shows the expanded Prepare Model For HDL Code Generation
folder, with the Check Global Settings task selected.

From the left pane, you can select a folder or an individual task. The HDL
Workflow Advisor displays information about the selected folder or task in
the right pane.
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The content of the right pane depends on the selected folder or task. For some
tasks, the right pane contains simple controls for running the task and a
display area for status messages and other task results. For other tasks (for
example, setting code or test bench generation parameters), the right pane
displays many parameter and option settings.

When you right-click a folder or an individual task in the left pane, a context
menu appears. The context menu lets you:

• Select a task or a group of tasks to run sequentially (see “Task Execution
Order” on page 15-10).

• Reset the status of one or more tasks to Not Run. Resetting status enables
you to rerun tasks.

• View context-sensitive help (CSH) for an individual task.
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Selecting and Running HDL Workflow Advisor Tasks

In this section...

“Task Execution Order” on page 15-10

“Changing the Device Under Test” on page 15-12

“Selecting and Running Tasks Individually” on page 15-13

“Selecting and Running a Sequence of Tasks” on page 15-16

Task Execution Order
The HDL Workflow Advisor displays folders, subfolders, and tasks in a
numbered hierarchy. The numbering represents a sequential workflow. That
is, the HDL Workflow Advisor does not enable a given task for execution until
all previous tasks have executed successfully.

For example, the tasks in the Prepare Model For HDL Code Generation
folder are numbered as follows:

2.1 Check Global Settings

2.2 Check Algebraic Loops

2.3 Check Block Compatibility

2.4 Check Sample Times

These tasks must execute in the order 2.1 ... 2.4.

What the Task Icons Represent
Icons represent the execution state of each task in the list. For an example,
see the following figure.
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In this figure:

• The green check mark icons to the left of tasks 1.1 and 2.1 – 2.3 indicate
that these tasks have executed without errors.

• The light blue icon to the left of task 2.4 indicates that this task is enabled
for execution. You can execute this individual task by:

- Selecting Run This Task from the right-click context menu or

- Clicking the Run This Task button in the right pane of the HDL
Workflow Advisor.
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• The gray icons to the left of all tasks below 3.1 indicate that these tasks are
not currently enabled for execution as individual tasks. You can execute a
group of such tasks by selecting one of them and then selecting Run To
Selected Task from the right-click context menu.

Resetting and Rerunning Tasks
Tasks that the Workflow Advisor has not yet run default to a Not Run state.
If you need to rerun a task at some point in the workflow for some reason, you
must first reset the task to a Not Run state. For example, you might change
some code generation parameters for one of the Set Code Generation
Options tasks. In such a case, you should rerun that task and validate
your parameter settings. Before you can do this, you must reset the task to
a Not Run state.

To reset a task:

1 Right-click the task icon and select Reset This Task.

2 After reset, verify that the task is in a Not Run state and enabled.

Changing the Device Under Test
If you want to run HDL Workflow Advisor checks or tasks on a different
subsystem within the same model, follow these steps:

1 In the HDL Workflow Advisor, select File > Switch subsystem. The HDL
Workflow Advisor displays the following message.

2 Click Load. The System Selector window opens.
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3 In the System Selector window, select the DUT that you want to review.

4 Click OK. The HDL Workflow Advisor is now ready to run with the selected
DUT.

Selecting and Running Tasks Individually
The HDL Workflow Advisor does not enable a given task for execution until
all previous tasks have executed successfully. At any given time, only one
task in the HDL Workflow Advisor hierarchy is enabled.

To perform a single task on the DUT and view the task results:

1 Locate and open the task folder that contains the desired task.

2 Inspect the desired task icon and verify that it is enabled.

• If the task you want to run is disabled, you must first run all the tasks
that precede it. See “Selecting and Running a Sequence of Tasks” on
page 15-16.
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• If the task you want to run is enabled, continue to the next step.

3 Right-click the task icon and select Run This Task.

The HDL Workflow Advisor runs the task. While the task runs, a progress
indicator appears.

4 If the check completes successfully, the HDL Workflow Advisor displays a
green check mark icon to the left of the completed task. The HDL Workflow
Advisor also enables the next task in the hierarchy. The following figure
shows the HDL Workflow Advisor after completion of the Check Global
Settings task.
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If the task fails, the HDL Workflow Advisor displays a red check mark
icon to the left of the completed task. The next task in the workflow is not
enabled, and you must correct all errors reported before you can proceed
to the next step. (See“Correcting a Warning or Failure Problem” on page
15-26.)

The following figure shows the HDL Workflow Advisor after failure of the
Check Global Settings task.
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Selecting and Running a Sequence of Tasks
The HDL Workflow Advisor supports two options that let you run a group of
two or more tasks. The options are:

• Run to Selected Task: Starting with the first enabled task in the HDL
Workflow Advisor hierarchy, run all tasks up to and including the selected
task.
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• Run to Failure: Starting with the first enabled task in the currently
selected folder, run all tasks in the folder. Task execution continues until
one of the following occurs:

- A task fails.

- All tasks within the folder complete successfully.

The Run to Failure option is available only at the folder level.

The following sections, “Run to Selected Task” on page 15-17 and “Run to
Failure” on page 15-19, illustrate each option.

Run to Selected Task
In the following figure, Check Sample Times is the first enabled task and
Set Advanced Options is selected.
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When you right-click and select Run to Selected Task, the HDL Workflow
Advisor performs tasks starting with Check Sample Times, then up to and
including Set Advanced Options. After this task sequence completes, the
Set Testbench Options task is enabled:
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Run to Failure
In the following figure, Set Basic Options is the first enabled task, and the
HDL Code Generation folder is selected.
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When you right-click and select Run to Failure, the HDL Workflow Advisor
performs tasks within the HDL Code Generation folder. This includes all
tasks within the Set Code Generation Options subfolder.

After this task sequence completes, the HDL Workflow Advisor shows the
results of the most recent task executed in the right pane:
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Saving and Restoring the HDL Workflow Advisor State

In this section...

“How the Save and Restore Process Works” on page 15-22

“Limitations of the Save and Restore Process” on page 15-22

“Saving the HDL Workflow Advisor State” on page 15-22

“Restoring the HDL Workflow Advisor State” on page 15-25

How the Save and Restore Process Works
By default, the coder saves the state of the most recent HDL Workflow
Advisor session. The next time you activate the HDL Workflow Advisor, it
returns to that state.

You can also save the current settings of the HDL Workflow Advisor to a
named restore point. At a later time, you can restore the same settings by
loading the restore point data into the HDL Workflow Advisor.

Limitations of the Save and Restore Process
The save and restore process has the following limitations:

• Any operation that you perform outside the HDL Workflow Advisor is not
included in the save/restore process.

• The state of HDL Workflow Advisor tasks involving third-party tools are
not saved or restored.

Saving the HDL Workflow Advisor State
You can create and save a restore point after successful completion of any task
sequence. For example, the following figure shows the HDL Workflow Advisor
after completion of the Set Target Interface task.
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To save the HDL Workflow Advisor settings at this point:

1 In the HDL Workflow Advisor, select File > Save Restore Point As.

15-23



15 Using the HDL Workflow Advisor

The Save Model and Data Restore Point dialog box opens.

2 In the Name field, enter a name for the restore point.

3 In the Description field, you can add optional descriptive text about the
restore point.

For example:
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4 Click Save. The HDL Workflow Advisor saves a restore point of the current
settings and closes the dialog box.

Restoring the HDL Workflow Advisor State
To load a restore point:

1 In the HDL Workflow Advisor, select File > Load Restore Point.

The Load Model and Data Restore Point dialog box opens.

2 Select the restore point that you want.

3 Click Load.

The HDL Workflow Advisor issues a warning that the restoration will
overwrite current settings.

4 Click Load to load the restore point you selected. The HDL Workflow
Advisor restores the previously saved state.
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Correcting a Warning or Failure Problem
If a task terminates due to a warning or failure condition, the right pane
of the HDL Workflow Advisor shows information about the problems. This
information appears in an Analysis Result subpane. The Analysis Result
subpane also suggests model settings you can use to correct the problems.

Some tasks have an Action subpane that lets you apply all of the
recommended actions listed in the Analysis Result subpane automatically.
In the following example, the Check Global Settings task has failed,
displaying an incorrect model setting in the Analysis Result pane.
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The Action subpane, below the Analysis Result subpane, contains a
Modify All button. To correct all the problems that appear in the Analysis
Result subpane, click the Modify All button.

After you click Modify All, the Analysis Result subpane reports the
changes that were applied. The task is set to a Not Run and enabled state,
enabling you to rerun the task and proceed to the subsequent tasks.
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Tip Review the Analysis Result box before automatically correcting failures
to ensure that you want to apply all of the recommended actions. If you do
not want to apply all of the recommended actions, do not clickModify All to
correct warnings or failures.
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Generating HDL Workflow Advisor Reports

In this section...

“Viewing HDL Workflow Advisor Reports” on page 15-29

“Saving HDL Workflow Advisor Reports” on page 15-33

Viewing HDL Workflow Advisor Reports
When the HDL Workflow Advisor runs tasks, it automatically generates an
HTML report of task results. Each folder in the HDL Workflow Advisor
contains a report for all of the checks within that folder and its subfolders.

You can access any report by selecting a folder and clicking the link in the
Report subpane. In the following example, the Prepare Model For HDL
Code Generation folder is selected.
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The following report shows typical results for a successful run of the Prepare
Model For HDL Code Generation tasks.

As you run checks, the HDL Workflow Advisor updates the reports with the
latest information for each check in the folder. A message appears in the
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report when you run the checks at different times. Time stamps indicate
when checks have been run. The time of the current run appears at the top
right of the report. Checks that occurred during previous runs have a time
stamp following the check name.

You can manipulate the report to show only what you are interested in
viewing as follows:

• The check boxes under Run Summary allow you to view only the checks
with the status that you are interested in viewing. For example, you can
remove the checks that have not run by clearing the check box next to
the Not Run status.

• Minimize folder results in the report by clicking the minus sign next to the
folder name. When you minimize a folder, the report updates to display a
run summary for that folder.

You can view the report for a folder automatically each time the folder’s tasks
run. To do this, select Show report after run:
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Saving HDL Workflow Advisor Reports
You can archive an HDL Workflow Advisor report by saving it to a new
location. To save a report:

1 In the HDL Workflow Advisor, navigate to the folder that contains the
report you want to save.

2 Select the folder that you want. The right pane of the HDL Workflow
Advisor shows information about that folder, including a Report subpane.

3 In the Report subpane, click Save As.

4 In the Save As dialog box, navigate to the location where you want to save
the report, and click Save. The HDL Workflow Advisor saves the report
to the new location.

Note If you rerun the HDL Workflow Advisor, the report is updated in the
working folder, not in the save location. You can find the full path to the
report in the title bar of the report window. Typically, the report is within the
working folder: slprj\modeladvisor\HDLAdv_\model_name\DUT_name\.
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Performing FPGA Synthesis and Analysis Tasks with
Third-Party Tools

In this section...

“FPGA Synthesis and Analysis Tasks Overview” on page 15-34

“Creating a Synthesis Project” on page 15-34

“Performing Logic Synthesis” on page 15-37

“Performing Mapping” on page 15-38

“Performing Place and Route” on page 15-39

FPGA Synthesis and Analysis Tasks Overview
The tasks in the FPGA Synthesis and Analysis folder let you run
third-party FPGA synthesis and analysis tools without leaving the HDL
Workflow Advisor environment. Tasks in this category include:

• Creation of FPGA synthesis projects for supported FPGA synthesis tools

• Launching supported FPGA synthesis tools to perform synthesis, mapping,
and place/route tasks

• Annotation of your original model with critical path information obtained
from the synthesis tools

Note A supported synthesis tool must be installed, and the synthesis
tool executable must be on the system path to perform the tasks in the
FPGA Synthesis and Analysis folder. See also “HDL Workflow Advisor
Compatibility with Third-Party Tools” on page 15-3 for more information.

Creating a Synthesis Project
The Create Project task does the following:

• Lets you specify an FPGA synthesis tool and select the target FPGA device
and other synthesis parameters
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• Realizes a synthesis project for the tool from the previously generated HDL
code

• Creates a link to the project files in the Result subpane

• (Optional) Launches the synthesis tool and opens the synthesis project

The following figure shows the Create Project task in an enabled state,
after HDL code generation.

The Create Project task parameters are:

• Synthesis tool: See “HDL Workflow Advisor Compatibility with
Third-Party Tools” on page 15-3

• Family: Target device family. The default is Virtex4.

• Device: Specific target device, within selected family.

• Package: The family and device determine the available package choices.
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• Speed: The family, device, and package determine the available speed
choices.

• Project directory: The HDL Workflow Advisor writes the project files to
a subfolder of the hdlsrc folder. You can enter the path to an alternate
folder, or click the Browse button to navigate to the desired folder.

• Custom HDL files: To include HDL files (or other synthesis files) that
were not generated by the coder in your synthesis project, enter the full
path to the desired files. Click the Add button to locate each file.

The following figure shows the HDL Workflow Advisor after passing the
Create Project task. If you want to view the synthesis project click the
hyperlink in the Result subpane. This link launches the synthesis tool and
opens the synthesis project.
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Performing Logic Synthesis
The Perform Logic Synthesis task does the following:

• Launches the synthesis tool in the background.

• Opens the previously generated synthesis project, compiles HDL code,
synthesizes the design and emits netlists and related files.

• Displays a synthesis log in the Result subpane.
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The Perform Logic Synthesis task does not have any input parameters.
The following figure shows the HDL Workflow Advisor after passing the
Perform Logic Synthesis task.

Performing Mapping
The Perform Mapping task does the following:

• Launches the synthesis tool in the background.

• Runs a mapping process that maps the synthesized logic design to the
target FPGA.

• Emits a circuit description file for use in the place and route phase.
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• Displays a log in the Result subpane.

The Perform Mapping task does not have any input parameters. The
following figure shows the HDL Workflow Advisor after passing the Perform
Mapping task.

Performing Place and Route
The Perform Place and Route task does the following:

• Launches the synthesis tool in the background.
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• Runs a Place and Route process that takes the circuit description produced
by the previous mapping process, and emits a circuit description suitable
for programming an FPGA.

• Also emits pre- and post-routing timing information for use in critical path
analysis and back annotation of your source model.

• Displays a log in the Result subpane.

Unlike other tasks in the HDL Workflow Advisor hierarchy, Perform Place
and Route is optional. If you select Skip this task option (see the following
figure) the HDL Workflow Advisor executes the workflow, but omits the
Perform Place and Route, marking it Passed. You may want to select Skip
this task if you prefer to do place and route work manually.

The following figure shows the HDL Workflow Advisor after passing the
Perform Place and Route task.
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Annotating Your Model with Critical Path Information
The Annotate Model with Synthesis Result task helps you to identify
critical paths in your model. At your option, the task analyzes pre- or
post-routing timing information produced by the Perform Place and Route
task, and visually highlights one or more critical paths in your model. The
following figure shows the Annotate Model with Synthesis Result task in
an enabled state.
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The task parameters are:

• Critical path source: Select pre-route or post-route. The default is
pre-route.

• Critical path number: You can annotate up to 3 critical paths. Select the
number of paths you want to annotate. The default is 1.

• Show all paths: Show all critical paths, including duplicate paths.
Default: Off

• Show unique paths: Show only the first instance of any path that is
duplicated.

• Show delay data: Annotate the cumulative timing delay on each path.
Default: On

• Show ends only: Show the endpoints of each path, but omit the
connecting signal lines. Default: Off

When the Annotate Model with Synthesis Result task runs to completion,
the coder displays the DUT with critical path information highlighted. The
following figure shows a subsystem after critical path annotation. Using
default options, the annotation includes the endpoints, signal lines, and delay
data.
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After the Annotate Model with Synthesis Result task runs to completion,
the HDL Workflow Advisor enables the Reset Highlighting button in the
Action subpane. When you click this button, the HDL Workflow Advisor:

• Clears all critical path annotations from the model.

• Resets the Annotate Model with Synthesis Result task.
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Automated Workflows for Specific Target Devices and
Synthesis Tools

The HDL Workflow Advisor lets you perform complete automated workflows
for a number of target devices. The Target platform pulldown menu of the
Set Target Device and Synthesis Tool task lists the supported target
devices.

After you select the desired target device and configure its I/O interface, you
can let the HDL Workflow Advisor perform the subsequent model checking,
HDL code generation, and FPGA synthesis and analysis tasks, with no need
for your intervention. See the following sections for information on automated
workflows for specific types of targets:

• “Workflow for Speedgoat FPGA IO Boards and xPC Target” on page 15-48
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• “Workflow for Xilinx FPGA Development Boards” on page 15-63
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Workflow for Speedgoat FPGA IO Boards and xPC Target

In this section...

“Selecting a Speedgoat Target Device” on page 15-48

“Setting the Target Interface for Speedgoat Boards” on page 15-53

“Code Generation, Synthesis, and Generation of xPC Target Interface
Subsystem” on page 15-58

Selecting a Speedgoat Target Device

Note Before selecting a Speedgoat target device, see “HDL Workflow Advisor
Compatibility with Third-Party Tools” on page 15-3

The demo model that illustrates this workflow is:

dxpcSGIO301servo_fpga

To open this demo, you must have a license for xPC Target software. See also
“Working with FPGAs ” in the xPC Target documentation.
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To follow the workflow:

1 Open the model.

The ServoSystem subsystem is the device under test (DUT) to be selected
for HDL code generation.

2 From the Simulink Tools menu, select HDL Code Generation > HDL
Workflow Advisor.

3 In the System Selector window, select the ServoSystem subsystem.
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4 Click OK.

The HDL Workflow Advisor opens.

5 In the HDL Workflow Advisor, select the Set Target Device and
Synthesis Tool task. The default target is the Generic ASIC/FPGA
Target.
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6 xPC Target and HDL Workflow Advisor support the same set of Speedgoat
devices. Select the Speedgoat IO301 from the Target platform menu.

After you select the Speedgoat device, the HDL Workflow Advisor updates
its display, as follows:
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• The Set Target Interface and Download to Target tasks appear
in the left pane.

• The selected Synthesis tool is Xilinx ISE.

• The other properties have values (in this case, read-only) that are
appropriate for the target device.

7 Click the Run This Task button. While the Set Target Device and
Synthesis Tool task runs, HDL Workflow Advisor displays a progress
indicator.

After the Set Target Device and Synthesis Tool task completes, the
HDL Workflow Advisor enables the next task in the hierarchy, Set Target
Interface. The following figure shows the HDL Workflow Advisor after
completion of the Set Target Device and Synthesis Tool task.
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8 Proceed to the next task, “Setting the Target Interface for Speedgoat
Boards” on page 15-53.

Setting the Target Interface for Speedgoat Boards
The Set Target Interface task lets you define how the inputs and outputs
of the DUT map to the inputs and outputs of the selected Speedgoat target
device. The figure below shows the initial state of the Set Target Interface
pane of the HDL Workflow Advisor.
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The pane displays the Target Platform Interface Table. The HDL Workflow
Advisor automatically enters information about each input or output port on
the DUT into the following columns:

• Port Name (read-only): The name of the port on the DUT

• Port Type (read-only): Either Inport or Outport

• Data Type (read-only): The data type of the port

The remaining columns in the Target Platform Interface Table let you define
how each port on the DUT is allocated to an I/O resource on the target device.
To allocate ports:
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1 In the left pane of the HDL Workflow Advisor, select the Set Target
Interface task.

2 In the Target Platform Interface Table, click the Target Platform
Interfaces column for a port that you want to allocate. The HDL Workflow
Advisor displays a pulldown menu listing the available I/O resources for
the target device. Initially, all ports are set to No Interface Specified,
the default.

3 Select an option from the menu. For Speedgoat devices, the Target
Platform Interfaces menu presents the following options for each port:

• No Interface Specified (default): The port is not allocated to any
resource on the target device.

• TTL I/O Connector [0:63]: The port is allocated to a specified bit
position [b] or range of bit positions [lsb:msb]. The width of the
specification, in bits, must equal the width of the port on the DUT.

When you select TTL I/O Connector [0:63], the HDL Workflow
Advisor automatically allocates a bit range of the correct width.

• PCI Interface: Specifies an address (in hexadecimal) in the 32-bit PCI
address space of the Speedgoat target device. PCI addresses increase in
increments of 4 (for example, x"8100", x"8104", ...).

When you select PCI Interface, the HDL Workflow Advisor
automatically allocates the next available address, starting at x"8100".

• Specify FPGA Pin {'LSB',...,'MSB'}: Enter one or more FPGA pin
names as a cell array of strings. Enter the pin name specification in the
Bit Range / Address / FPGA Pin column. The number of pin names
must equal the width of the port on the DUT. See your Speedgoat board
documentation for the required format for pin names.

4 If you select TTL I/O Connector [0:63] or PCI Interface, the HDL
Workflow Advisor automatically displays a default bit range or address
in the Bit Range / Address / FPGA Pin column. For example, in the
following figure, the Motor Cmd port has been allocated to PCI address
x"8100".
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If you want to change a value entered by the HDL Workflow Advisor,
double-click in the Bit Range / Address / FPGA Pin column and edit
the value.

5 Continue allocating ports as required by your design. When you have
finished allocating ports, click Apply.

The following figure shows the Target Platform Interface Table in a typical
configuration. All ports have been allocated to a PCI Interface address or a
single bit on the TTL I/O Connector.
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Caution At least one port must be allocated to the target device. If all
ports are left unallocated, the Set Target Interface task shows an error
and terminates.

6 Click the Run This Task button. While the Set Target Interface task
runs, the HDL Workflow Advisor displays a progress indicator.

7 After the Set Target Interface task completes, the HDL Workflow
Advisor enables the next task in the hierarchy.
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8 Proceed to the next task, “Code Generation, Synthesis, and Generation of
xPC Target Interface Subsystem” on page 15-58

Code Generation, Synthesis, and Generation of xPC
Target Interface Subsystem
After selecting the target device and configuring its port interface, you can let
the HDL Workflow Advisor perform the next sequence of tasks automatically.
These tasks include:

• Prepare Model For HDL Code Generation: Checking the model for
HDL code generation compatibility.

• HDL Code Generation: Setting HDL-related options of the Configuration
Parameters dialog and generating HDL code.
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• FPGA Synthesis and Analysis: Executing synthesis and timing analysis
in Xilinx ISE; back annotating the model with critical path information
obtained during synthesis.

• Download to Target : Generating an FPGA programming file and a
model that contains an xPC Target interface subsystem.

Tip The Download to Target tasks do not actually download anything
to a target device. The purpose of these tasks is to create an interface
subsystem that you can plug in to an xPC Target model.

To run this sequence of tasks automatically:

1 Open the Download to Target task group.

2 Right-click Generate xPC Target interface and select Run to Selected
Task.
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3 As the Run to Selected Task sequence executes, the HDL Workflow
Advisor displays a progress indicator for each task.

After the task sequence completes, the Result subpane appears as shown
in the following figure.
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4 The Result pane displays a link to a generated model —
gm_dxpcSGIO301servo_fpga_xpc.mdl. Click the link to open the model.

5 The following figure shows the gm_dxpcSGIO301servo_fpga_xpc model.
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The model contains the xPC Target interface subsystem. This new
subsystem replaces the DUT (ServoSystem) in the original model. It
replaces the internals of the original DUT with an xPC Target FPGA block
and other blocks to work with the algorithm on the FPGA.

6 Save the gm_dxpcSGIO301servo_fpga_xpc model.

7 To learn how to use the generated model with xPC Target, see “Working
with FPGAs ” in the xPC Target documentation.
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Workflow for Xilinx FPGA Development Boards

In this section...

“Example Model” on page 15-63

“Selecting the Target Device” on page 15-64

“Setting the Target Interface” on page 15-68

“Code Generation, Synthesis, and Programming of Target Device” on page
15-72

Example Model
The HDL Workflow Advisor supports a number of Xilinx FPGA development
boards. For example, the mservo_uart_ML506 model is designed to work with
a Xilinx Virtex-5 ML506 development board.

The Servo_uart subsystem receives commands through UART ports and
generates a pulse-width modulation (PWM) waveform to control a servo motor.

The following sections use the mservo_uart_ML506 model to illustrate the
typical HDL Workflow Advisor tasks required to generate and synthesize
HDL code and then program a Xilinx FPGA development board.
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Selecting the Target Device

Note Before selecting a Xilinx target device, see “HDL Workflow Advisor
Compatibility with Third-Party Tools” on page 15-3

To select the Virtex-5 ML506 development board as the target device:

1 Open the model.

2 The Servo_uart subsystem is the device under test (DUT) for HDL
code generation. From the Simulink Tools menu, select HDL Code
Generation > HDL Workflow Advisor.

3 In the System Selector window, select the Servo_uart subsystem.

4 Click OK.

The HDL Workflow Advisor appears.
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5 In the HDL Workflow Advisor, select the Set Target Device and
Synthesis Tool task. The default target is the Generic ASIC/FPGA
Target.

6 Select Xilinx Virtex-5 ML506 development board from the Target
platform menu.
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After you select the Xilinx Virtex-5 ML506 device, the HDL Workflow
Advisor updates its display:
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• The Set Target Interface and Download to Target tasks appear
in the left pane.

• The selected Synthesis tool is Xilinx ISE.

• The other properties have values (in this case, read-only) that are
appropriate for the target device.

7 Click the Run This Task button. While the Set Target Device and
Synthesis Tool task runs, the HDL Workflow Advisor displays a progress
indicator.

After the Set Target Device and Synthesis Tool task completes, the
HDL Workflow Advisor enables the next task in the hierarchy, Set Target
Interface. The following figure shows the HDL Workflow Advisor after
completion of the Set Target Device and Synthesis Tool task.
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8 Proceed to the next task, “Setting the Target Interface” on page 15-68.

Setting the Target Interface
The Set Target Interface task lets you define how the inputs and outputs of
the DUT map to the inputs and outputs of the selected target device.

To configure the target interface for the Xilinx Virtex-5 ML506 device:

1 Click the Set Target Interface task in the left pane of the HDL Workflow
Advisor. The right pane displays the Target Platform Interface Table. The
figure below shows the initial state of the Target Platform Interface Table.
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The HDL Workflow Advisor automatically enters information about each
input or output port on the DUT into the following columns:

• Port Name (read-only): The name of the port on the DUT

• Port Type (read-only): Either Inport or Outport

• Data Type (read-only): The data type of the port

2 In the Target Platform Interface Table, click the Target Platform
Interfaces column for a port that you want to allocate. The HDL Workflow
Advisor shows a pulldown menu listing the available I/O resources for
the target device. Initially, all ports are set to No Interface Specified,
the default.

3 Select an option from the menu. For detailed information on each Target
Platform Interfaces option, see the documentation for your Xilinx
Virtex-5 ML506 development board. This example uses only the following
options:

• RS232 Serial Port Rx

• RS232 Serial Port Tx

15-69



15 Using the HDL Workflow Advisor

• LEDs General Purpose [0 7]

• Expansion Headers J6 Pin 2 64 [0:31]

Each port is allocated to a specified bit position [b] or range of bit positions
[lsb:msb]. The width of the specification, in bits, must equal the width of
the port on the DUT.

When you select any of these options, the HDL Workflow Advisor
automatically allocates a bit range of the correct width. If you want to
change a value entered by the HDL Workflow Advisor, double-click in the
Bit Range / Address / FPGA Pin column and edit the value.

4 Continue allocating ports as required by your design. When you have
finished allocating ports, click Apply.

The following figure shows the Target Platform Interface Table in a typical
configuration.
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Caution At least one port must be allocated to the target device. If all
ports are left unallocated, the Set Target Interface task displays an error
and terminates.

5 Click the Run This Task button. While the Set Target Interface task
runs, the HDL Workflow Advisor displays a progress indicator.

6 After the Set Target Interface task completes, the HDL Workflow
Advisor enables the next task in the hierarchy.

7 Proceed to the next task, “Code Generation, Synthesis, and Programming
of Target Device” on page 15-72
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Code Generation, Synthesis, and Programming of
Target Device
After selecting the target device and configuring its port interface, you can let
the HDL Workflow Advisor perform the next sequence of tasks automatically.
These tasks include:

• Prepare Model For HDL Code Generation: Checking the model for
HDL code generation compatibility.

• HDL Code Generation: Setting HDL-related options of the Configuration
Parameters dialog and generating HDL code.

• FPGA Synthesis and Analysis: Executing synthesis and timing analysis
in Xilinx ISE; back annotating the model with critical path information
obtained during synthesis.

• Download to Target has two subtasks:

- Generate Programming File: Generating an FPGA programming file.

- Program Target Device: Downloading the programming file to the
Xilinx Virtex-5 ML506 development board.

Tip Before executing the Program Target Device task, make sure
that your host PC is properly connected to the Xilinx Virtex-5 ML506
development board via a JTAG programming cable.

To run this sequence of tasks automatically:

1 Open the Download to Target task group.

2 Right-click Program Target device and select Run to Selected Task.
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3 As the Run to Selected Task sequence executes, the HDL Workflow
Advisor displays a progress indicator for each task.

4 The task sequence concludes by programming your target board with
the generated programming file. If desired, you can then read the code
generation and synthesis log files.
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HDL Workflow Advisor Tasks

In this section...

“HDL Workflow Advisor Tasks Overview” on page 16-3

“Set Target Overview” on page 16-5

“Set Target Device and Synthesis Tool” on page 16-6

“Set Target Interface” on page 16-7

“Prepare Model For HDL Code Generation Overview” on page 16-8

“Check Global Settings” on page 16-9

“Check Algebraic Loops” on page 16-10

“Check Block Compatibility” on page 16-11

“Check Sample Times” on page 16-12

“HDL Code Generation Overview” on page 16-13

“Set Code Generation Options Overview” on page 16-14

“Set Basic Options” on page 16-15

“Set Advanced Options” on page 16-16

“Set Testbench Options” on page 16-17

“Generate RTL Code and Testbench” on page 16-18

“FPGA Synthesis and Analysis Overview” on page 16-19

“Create Project” on page 16-20

“Perform Synthesis and P/R Overview” on page 16-21

“Perform Logic Synthesis” on page 16-22

“Perform Mapping” on page 16-23

“Perform Place and Route” on page 16-24

“Annotate Model with Synthesis Result” on page 16-25

“Download to Target Overview” on page 16-26

“Generate Programming File” on page 16-27

“Program Target Device” on page 16-28

16-2



HDL Workflow Advisor Tasks

In this section...

“Generate xPC Target Interface” on page 16-29

“Save and Restore HDL Workflow Advisor State” on page 16-30

HDL Workflow Advisor Tasks Overview
The HDL Workflow Advisor is a tool that supports a suite of tasks covering all
stages of the FPGA design process. Some tasks perform model validation or
checking; others run the HDL code generator or third-party tools. Each folder
at the top level of the HDL Workflow Advisor contains a group of related
tasks that you can select and run:

• Set Target: The tasks in this category enable you to select the desired
target device and map its I/O interface to the inputs and outputs of your
model.

• Prepare Model For HDL Code Generation: The tasks in this category
check your model for HDL code generation compatibility. The tasks also
report on any model settings, blocks, or other conditions (such as algebraic
loops) that would impede successful code generation, and provide advice on
how to fix such problems.

• HDL Code Generation: This category supports all HDL-related options
of the Configuration Parameters dialog, including setting all HDL code and
test bench generation parameters, and generating code, test bench, or a
cosimulation model.

• FPGA Synthesis and Analysis: The tasks in this category support:

- Synthesis and timing analysis through integration with third-party
synthesis tools

- Back annotation of the model with critical path and other information
obtained during synthesis

• Download to Target: The tasks in this category depend on the selected
target device and might include:

- Generation of a target-specific FPGA programming file

- Programming the target device

- Generation of a model that contains an xPC Target interface subsystem
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See Also

• For summary information on each HDL Workflow Advisor folder or task,
select the folder or task icon and then click the HDL Workflow Advisor
Help button.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Set Target Overview
The tasks in the Set Target folder enable you to select a target FPGA device
and define the I/O interface to be generated for the device. The Set Target
folder contains the following tasks:

• Set Target Device and Synthesis Tool: Select a target FPGA device
and synthesis tools.

• Set Target Interface: Use the Target Platform Interface Table to assign
each port on your DUT to an I/O resource on the target device.

See Also

• For summary information on each Set Target task, select the task icon
and then click the HDL Workflow Advisor Help button.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Set Target Device and Synthesis Tool
Set Target Device and Synthesis Tool enables you to select an FPGA
target device and an associated synthesis tool from a pulldown menu that lists
all devices that HDL Workflow Advisor currently supports.

Description
This task displays the following options:

• Target platform: A pulldown menu that lists all devices the HDL
Workflow Advisor currently supports.

• Synthesis tool: Selection of a target device determines the available
choices for synthesis tool.

• Read-only properties that have values appropriate for the target device.

Dependencies
Setting Target platform to a target other than Generic ASIC/FPGA Target
enables the following tasks:

• “Set Target Interface” on page 16-7

• Tasks in the Download to Target folder

See Also
For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Set Target Interface
Set Target Interface displays properties of input and output ports on your
model, and enables you to map these ports to I/O resources on the target
device.

Description
Set Target Interface displays the Target Platform Interface Table, which
shows:

• The name, port type (input or output), and data type for each port on
your model

• A pulldown menu listing the available I/O resources for the target device

These resources are device-specific. For detailed information on each
resource, see the documentation for your FPGA development board.

Dependency
This task appears when you set Target platform to a target other than
Generic ASIC/FPGA Target.

See Also
For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Prepare Model For HDL Code Generation Overview
The tasks in the Prepare Model For HDL Code Generation folder check
the model for compatibility with HDL code generation. If a check encounters
any condition that would raise a code generation warning or error, the right
pane of the HDL Workflow Advisor displays information about the condition
and how to fix it. The Prepare Model For HDL Code Generation folder
contains the following checks:

• Check Global Settings: Check all model parameters for compatibility
with HDL code generation.

• Check Algebraic Loops: Check the model for algebraic loops.

• Check Block Compatibility: Check that all blocks in the model support
HDL code generation.

• Check Sample Times: Check that solver options, tasking mode, and rate
transition diagnostic settings are correct, given the model’s sample times.

See Also

• For summary information on each Prepare Model For HDL Code
Generation task, select the task icon and then click the HDL Workflow
Advisor Help button.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Check Global Settings
Check Global Settings checks model-wide parameter settings for HDL
code generation compatibility.

Description
This check examines all model parameters for compatibility with HDL code
generation and flags any condition that would raise an error or a warning
during code generation. The HDL Workflow Advisor displays a table with the
following information about each condition detected:

• Block: Hyperlink to the model configuration dialog page that contains the
error or warning condition

• Settings: Name of the model parameter that caused the error or warning
condition

• Current: Current value of the setting

• Recommended: Recommended value of the setting

• Severity: Severity level of the warning or error condition. Minimally, you
should fix all settings that are tagged as error.

Tip
To set all reported settings to their recommended values, click theModify All
button. You can then run the check again and proceed to the next check.

See Also
For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Check Algebraic Loops
Detect algebraic loops in the model.

Description
The coder does not support HDL code generation for models in which algebraic
loop conditions exist. Check Algebraic Loops examines the model and fails
the check if it detects any algebraic loop. You should eliminate algebraic
loops from your model before proceeding with further HDL Workflow Advisor
checks or code generation.

See Also

• For information about algebraic loops, see “Algebraic Loops” in the
Simulink documentation.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Check Block Compatibility
Check the DUT for unsupported blocks.

Description
Check Block Compatibility checks all blocks within the DUT for
compatibility with HDL code generation. The check fails if it encounters any
blocks that the coder does not support. The HDL Workflow Advisor reports all
incompatible blocks, including the full path to each block.

See Also

• See “Summary of Block Implementations” on page 5-3 for a complete list
of supported blocks and their implementations.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Check Sample Times
Check the solver, sample times, and tasking mode settings for the model.

Description
Check Sample Times checks the solver options, sample times, tasking
mode, and rate transition diagnostics for HDL code generation compatibility.
Solver options that the coder requires or recommends are:

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup for details.)

• Solver: Discrete (no continuous states). Other fixed-step solvers could be
selected, but this option is usually the correct one for simulating discrete
systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode. Do not set Tasking mode
to Auto.

• Multitask rate transition and Single task rate transition diagnostic
options: set to Error.

See Also
For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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HDL Code Generation Overview
The tasks in the HDL Code Generation folder enable you to:

• Set and validate HDL code and test bench generation parameters. Almost
all parameters of the HDL Code Generation pane of the Configuration
Parameters dialog box and the Model Explorer are supported.

• Generate any or all of:

- RTL code

- RTL test bench

- Cosimulation model

To run all tasks in the HDL Code Generation folder automatically, select
the folder and click Run to Failure.

Tip After any task in this folder runs successfully, the coder updates the
Configuration Parameters dialog box and the Model Explorer.

See Also

• For details on the options and parameters in the HDL Code Generation
pane of the Configuration Parameters dialog box and the Model Explorer,
see Chapter 3, “Code Generation Options in the Simulink® HDL Coder
Dialog Boxes”.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Set Code Generation Options Overview
The tasks in the Set Code Generation Options folder enable you to set and
validate HDL code and test bench generation parameters. Each task of the
Set Code Generation Options folder supports options of the HDL Code
Generation pane of the Configuration Parameters dialog box and the Model
Explorer. The tasks are:

• Set Basic Options: Set parameters that affect overall operation of code
generation. See “HDL Code Generation Pane: General” on page 3-9 for
information on each parameter.

• Set Advanced Options: Set parameters that specify detailed
characteristics of the generated code, such as HDL element naming and
whether certain optimizations apply. See “HDL Code Generation Pane:
Global Settings” on page 3-21 for information on each parameter.

• Set Testbench Options: Set options that determine characteristics of
generated test bench code. See “HDL Code Generation Pane: Test Bench”
on page 3-67 for information on each parameter.

To run all tasks in the Set Code Generation Options folder automatically,
select the folder and click Run to Failure.

See Also

• For details on the options and parameters of the HDL Code Generation
pane of the Configuration Parameters dialog box and the Model Explorer,
see Chapter 3, “Code Generation Options in the Simulink® HDL Coder
Dialog Boxes”.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Set Basic Options
Set parameters that affect overall operation of code generation.

Description
The Set Basic Options task sets options that are fundamental to HDL code
generation. These options include selecting the DUT and selecting the target
language. The basic options are the same as those found in the top-level HDL
Code Generation pane of the Configuration Parameters dialog box, except
that the Code generation output group is omitted.

See Also

• For details on the options and parameters in the HDL Code Generation
pane of the Configuration Parameters dialog box and the Model Explorer,
see Chapter 3, “Code Generation Options in the Simulink® HDL Coder
Dialog Boxes”.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Set Advanced Options
Set parameters that specify detailed characteristics of the generated code.

Description
The advanced options are the same as those found in the HDL Code
Generation > Global Settings pane of the Configuration Parameters dialog
box and the Model Explorer.

See Also

• For details on the options and parameters in the HDL Code Generation
pane of the Configuration Parameters dialog box and the Model Explorer,
see Chapter 3, “Code Generation Options in the Simulink® HDL Coder
Dialog Boxes”.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Set Testbench Options
Set options that determine characteristics of generated test bench code.

Description
The test bench options are the same as those found in the HDL Code
Generation > Test Bench pane of the Configuration Parameters dialog
box and the Model Explorer.

See Also

• For details on the options and parameters in the HDL Code Generation
pane of the Configuration Parameters dialog box and the Model Explorer,
see Chapter 3, “Code Generation Options in the Simulink® HDL Coder
Dialog Boxes”.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Generate RTL Code and Testbench
Select and initiate generation of RTL code, RTL test bench, and cosimulation
model.

Description
The Generate RTL Code and Testbench task enables you to choose what
type of code or model you want to generate. You can select any combination
of the following:

• RTL code: Generate RTL code in the target language.

• RTL testbench: Generate an RTL test bench in the target language.

• Cosimulation model for use with: Selecting this option enables the
dropdown menu to the right of the check box. Select one of the following
options from the menu:

- Mentor Graphics ModelSim: This option is the default. If your
installation includes EDA Simulator Link for use with Mentor Graphics
ModelSim, the coder generates and opens a Simulink model that
contains an HDL Cosimulation block for Mentor Graphics ModelSim.

- Cadence Incisive: If your installation includes EDA Simulator Link
for use with Cadence Incisive, the coder generates and opens a Simulink
model that contains an HDL Cosimulation block for Cadence Incisive.

See Also
“Generating a Simulink Model for Cosimulation with an HDL Simulator”
on page 11-20
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FPGA Synthesis and Analysis Overview
Create projects for supported FPGA synthesis tools, perform FPGA synthesis,
mapping, and place/route tasks, and annotate critical paths in the original
model

Description
The tasks in the FPGA Synthesis and Analysis folder enable you to:

• Create FPGA synthesis projects for supported FPGA synthesis tools.

• Launch supported FPGA synthesis tools, using the project files to perform
synthesis, mapping, and place/route tasks.

• Annotate your original model with critical path information obtained from
the synthesis tools.

Note The current release requires Xilinx ISE 12.1 to perform the tasks in
the FPGA Synthesis and Analysis folder.

The tasks are:

• Create Project

• Perform Synthesis and P/R

• Annotate Model with Synthesis Result

See Also
See also “Performing FPGA Synthesis and Analysis Tasks with Third-Party
Tools” on page 15-34
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Create Project
Create FPGA synthesis project for supported FPGA synthesis tool.

Description
This task creates a synthesis project for the selected synthesis tool and loads
the project with the HDL code generated for your model.

You can select the desired FPGA family, device, package, and speed. You can
also specify that the project contains custom HDL files in addition to the
generated code.

When the project creation completes, the HDL Workflow Advisor displays a
link to the project in the right pane. Click this link to view the project in
the synthesis tool’s project window.

Note The current release requires Xilinx ISE 12.1 to perform this task.

See Also
See also “Creating a Synthesis Project” on page 15-34
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Perform Synthesis and P/R Overview
Launch supported FPGA synthesis tools to perform synthesis, mapping, and
place/route tasks.

Description
The tasks in the Perform Synthesis and P/R folder enable you to:

• Perform Logic Synthesis: Launch supported FPGA synthesis tool and
synthesize the generated HDL code.

• Perform Mapping: Launch supported FPGA synthesis tool and perform
mapping and timing analysis.

• Perform Place and Route: Launch supported FPGA synthesis tool and
perform place and route functions.

Note The current release requires Xilinx ISE 12.1 to perform these three
tasks.

See Also
See also “Performing FPGA Synthesis and Analysis Tasks with Third-Party
Tools” on page 15-34
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Perform Logic Synthesis
Launch supported FPGA synthesis tool and synthesize the generated HDL
code.

Description
The Perform Logic Synthesis task:

• Launches the synthesis tool in the background.

• Opens the previously generated synthesis project, compiles HDL code,
synthesizes the design, and emits netlists and related files.

• Displays a synthesis log in the Result subpane.

See Also
See also “Performing Logic Synthesis” on page 15-37
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Perform Mapping
Launches supported FPGA synthesis tool and maps the synthesized logic
design to the target FPGA

Description
The Perform Mapping task:

• Launches the synthesis tool in the background.

• Runs a mapping process that maps the synthesized logic design to the
target FPGA.

• Emits a circuit description file for use in the place and route phase.

• Displays a log in the Result subpane.

See Also
See also “Performing Mapping” on page 15-38

16-23



16 HDL Workflow Advisor Tasks

Perform Place and Route
Launches the synthesis tool in the background and runs a Place and Route
process.

Description
The Perform Place and Route task:

• Launches the synthesis tool in the background.

• Runs a Place and Route process that takes the circuit description produced
by the previous mapping process, and emits a circuit description suitable
for programming an FPGA.

• Also emits pre- and post-routing timing information for use in critical path
analysis and back annotation of your source model.

• Displays a log in the Result subpane.

Tips
If you select Skip this task , the HDL Workflow Advisor executes the
workflow, but omits the Perform Place and Route, marking it Passed.
You might want to select Skip this task if you prefer to do place and route
work manually.

See Also
See also “Performing Place and Route” on page 15-39
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Annotate Model with Synthesis Result
Analyzes pre- or post-routing timing information and visually highlights
critical paths in your model

Description
The Annotate Model with Synthesis Result task helps you to identify
critical paths in your model. At your option, the task analyzes pre- or
post-routing timing information produced by the Perform Place and Route
task, and visually highlights one or more critical paths in your model.

Input Parameters

Critical path source
Select pre-route or post-route.

Critical path number
You can annotate up to 3 critical paths. Select the number of paths
you want to annotate.

Show all paths
Show all critical paths, including duplicate paths.

Show unique paths
Show only the first instance of any path that is duplicated.

Show delay data
Annotate the cumulative timing delay on each path.

Show ends only
Show the endpoints of each path, but omit the connecting signal lines.

Results and Recommended Actions
When the Annotate Model with Synthesis Result task runs to completion,
the coder displays the DUT with critical path information highlighted.

See Also
“Annotating Your Model with Critical Path Information” on page 15-42
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Download to Target Overview
The Download to Target folder supports the following tasks:

• Generate Programming File: Generate an FPGA programming file.

• Program Target Device: Download generated programming file to the
target development board.

• Generate xPC Target Interface (for Speedgoat target devices only):
Generate a model that contains an xPC Target interface subsystem.

See Also

• For summary information on each Download to Target task, select the
task icon and then click the HDL Workflow Advisor Help button.

• For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Generate Programming File
The Generate Programming File task generates an FPGA programming
file that is compatible with the selected target device.

See Also
For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Program Target Device
The Program Target Device task downloads the generated FPGA
programming file to the selected target device.

Before executing the Program Target Device task, make sure that your
host PC is properly connected to the target development board via the
required programming cable.

See Also
For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Generate xPC Target Interface
The Generate xPC Target Interface task generates a model containing an
interface subsystem that you can plug in to an xPC Target model.

The naming convention for the generated model is:

gm_fpgamodelname_xpc.mdl

where fpgamodelname is the name of the original model.

See Also
For general information about the HDL Workflow Advisor, see Chapter 15,
“Using the HDL Workflow Advisor”.
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Save and Restore HDL Workflow Advisor State
You can save the current settings of the HDL Workflow Advisor to a named
restore point. At a later time, you can restore the same settings by loading the
restore point data into the HDL Workflow Advisor.

See Also
For detailed information on how to create, save, and load a restore point, see
“Saving and Restoring the HDL Workflow Advisor State” on page 15-22.
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READ THIS FIRST: Control File Compatibility and Conversion
Issues

In this section...

“Conversion From Use of Control Files Recommended” on page 17-2

“Detaching Existing Models From Control Files” on page 17-2

“Applying Control File Settings” on page 17-3

“Backwards Compatibility” on page 17-3

Conversion From Use of Control Files Recommended
As of release R2010b, the coder does not support the attachment of a control
file to a new model. Instead, the coder now saves all non-default HDL-related
model settings, block implementation selections and implementation
parameter settings to the model itself. This eliminates the need to maintain a
separate control file. Because the coder saves only the non-default parameter
settings, the loading and saving of models is more efficient. The recommended
practice is to discontinue use of control files and convert existing models. This
simple process is described in the next section.

Detaching Existing Models From Control Files
If you have existing models with attached control files, you should convert
them to the current format and remove control file linkage. To convert a
model that has an attached control file:

1 Open the model. When the coder opens a model that has an attached
control file, it loads and sets parameters as specified in the control file, and
clears the control file linkage from the model. During this process, the
coder displays the following messages:

Found HDL control file attached to the model 'test_model' ...
Loading control file 'test_model_control' ...
Successfully loaded control file 'test_model_control.m' ...
Please consider saving the model to make changes permanent ...
Detaching the HDL control file from the model...
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2 Save the model. The model now preserves all non-default settings. The
next time you open the model, the coder will not display any control file
status messages.

Note that although the model is now detached from the control file, the control
file itself is preserved so that you can apply it to other models if you wish.

Applying Control File Settings
The coder provides the hdlapplycontrolfile utility as a quick way to
transfer HDL settings from existing models that have attached control files to
other models. See hdlapplycontrolfile for further information.

Backwards Compatibility
For backward compatibility, the coder continues to support models that have
attached control files.
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Overview of Control Files

In this section...

“What Is a Control File?” on page 17-4

“Selectable Block Implementations and Implementation Parameters” on
page 17-5

“Implementation Mappings” on page 17-6

What Is a Control File?
Code generation control files (referred to in this document as control files) let
you

• Save your model’s HDL code generation options in a persistent form.

• Extend the HDL code generation process and direct its details.

You attach a control file to your model using either the makehdl command
or the Configuration Parameters dialog box. You do not need to know any
internal details of the code generation process to use a control file.

Control files support the following statement types:

• Selection/action statements provide a general framework for the
application of different types of transformations to selected model
components. Selection/action statements select a group of blocks within
your model, and specify an action to be executed when code is generated
for each block in the selected group.

Selection criteria include block type and location within the model. For
example, you might select all built-in Gain blocks at or below the level of a
certain subsystem within your model.

A typical action applied to such a group of blocks is to direct the code
generator to execute a specific block implementation method when
generating HDL code for the selected blocks. For example, for Gain blocks,
you might choose a method that generates code that is optimized for speed
or chip area.

• Property setting statements let you
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- Select the model or subsystem from which code is to be generated.

- Set the values of code generation properties to be passed to the code
generator. The properties and syntax are the same as those used for the
makehdl command.

- Set up default or template HDL code generation settings for your
organization.

Selectable Block Implementations and
Implementation Parameters
Selection/action statements provide a general framework that lets you define
how the coder acts upon selected model components. The current release
supports one such action: execution of block implementation methods.

Block implementation methods are code generator components that emit HDL
code for the blocks in a model. This document refers to block implementation
methods as block implementations or simply implementations.

The coder provides at least one block implementation for every supported
block . This is called the default implementation. In addition, the coder
provides selectable alternate block implementations for certain block types.
Each implementation is optimized for different characteristics, such as speed
or chip area. For example, you can choose Gain block implementations that
use canonic signed digit (CSD) techniques (reducing area), or use a default
implementation that retains multipliers.

For many block implementations, you can set implementation parameters that
provide a further level of control over how code is generated for a particular
implementation. For example, most blocks support the 'OutputPipeline'
implementation parameter. This parameter lets you specify the generation of
output pipeline stages for selected blocks by passing in the required pipeline
depth as the parameter value.

See Chapter 4, “Specifying Block Implementations and Parameters for HDL
Code Generation” for a complete summary of all supported blocks and their
implementations and implementation parameters.
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Implementation Mappings
Control files let you specify one or more implementation mappings that control
how HDL code is to be generated for a specified group of blocks within the
model. An implementation mapping is an association between a selected block
or set of blocks within the model and a block implementation.

To select the set of blocks to be mapped to a block implementation, you specify

• A modelscope: a Simulink block path (which could incorporate an entire
model or sublevel of the model, or a specific subsystem or block)

• A blocktype: a Simulink block type that corresponds to the selected block
implementation

During code generation, each defined modelscope is searched for instances of
the associated blocktype. For each such block instance encountered, the code
generator uses the selected block implementation.
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Structure of a Control File
The required elements for a code generation control file are as follows:

• A control file implements a single function, which is invoked during the
code generation process.

The function must instantiate a code generation control object, set its
properties, and return the object to the code generator.

Setting up a code generation control object requires the use of a small
number of methods, as described in “Code Generation Control Objects and
Methods” on page 17-9. You do not need to know internal details of the code
generation control object or the class to which it belongs.

You construct the object using the hdlnewcontrol function. The argument
to hdlnewcontrol is the name of the control file itself. Use the mfilename
function to pass in the file name, as shown in the following example.

function c = dct8config
c = hdlnewcontrol(mfilename);

% Set target language for Verilog.
c.set('TargetLanguage','Verilog');

% Set top-level subsystem from which code is generated.
c.generateHDLFor('dct8_fixed/OneD_DCT8');

• Following the constructor call, your code will invoke methods of the
code generation control object. The previous example calls the set and
generateHDLFor methods. These and all other public methods of the object
are discussed in “Code Generation Control Objects and Methods” on page
17-9.

• Your control file must be attached to your model before code generation,
as described in “Using Control Files in the Code Generation Process” on
page 17-17. The interface between the code generator and your attached
control file is automatic.

• A control file must be located in either the current working folder, or a
folder that is in the MATLAB path.
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However, your control files should not be located within the MATLAB tree
because they could be overwritten by subsequent installations.
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Code Generation Control Objects and Methods

In this section...

“Overview” on page 17-9

“hdlnewcontrol” on page 17-9

“forEach” on page 17-9

“forAll” on page 17-14

“set” on page 17-14

“generateHDLFor” on page 17-15

“hdlnewcontrolfile” on page 17-16

Overview
Code generation control objects are instances of the class
slhdlcoder.ConfigurationContainer. This section describes the public
methods of that class that you can use in your control files. All other methods
of this class are for MathWorks internal development use only. The methods
are described in the following sections:

hdlnewcontrol
The hdlnewcontrol function constructs a code generation control object. The
syntax is

object = hdlnewcontrol(mfilename);

The argument to hdlnewcontrol is the name of the control file itself. Use the
mfilename function to pass in the file name string.

forEach
This method establishes an implementation mapping between an HDL block
implementation and a selected block or set of blocks within the model. The
syntax is

object.forEach({'modelscopes'}, ...
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'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

The forEach method selects a set of blocks (modelscopes) that is searched,
during code generation, for instances of a specified type of block (blocktype).
Code generation for each block instance encountered uses the HDL block
implementation specified by the implementation parameter.

Note You can use the hdlnewforeach function to generate forEach method
calls for insertion into your control files. See “Generating Selection/Action
Statements with the hdlnewforeach Function” on page 17-19 for more
information.

The following table summarizes the arguments to the forEach method.

Argument Type Description

block_parms Cell
array
of
strings

Reserved for future use. Pass in an empty cell array ({})
as a placeholder.

blocktype String Block specification that identifies the type of block that
is to be mapped to the HDL block implementation. Block
specification syntax is the same as that used in the
add-block command. For built-in blocks, the blocktype
is of the form

'built-in/blockname'

For other blocks, blocktype must include the full path to
the library containing the block, for example:

'dsparch4/Digital Filter'

17-10



Code Generation Control Objects and Methods

Argument Type Description

implementation String The implementation string represents an HDL block
implementation to be used in code generation for all blocks
that meet the modelscope and blocktype search criteria.
Every block has at least one implementation. “Summary
of Block Implementations” on page 5-3 provides guidleines
for specifying implementations, and lists supported blocks
and their implementations.

implementation_parms Cell
array
of p/v
pairs

Cell array of property/value pairs that set code generation
parameters for the block implementation specified by
the implementation argument. Specify parameters
as:'Property', value
where 'Property' is the name of the property and value is
the value applied to the property. If the implementation has
no parameters, or you want to use default parameters, pass
in an empty cell array ({}) .

“Summary of Block Implementations” on page 5-3 describes
the syntax of each parameter, and describes how the
parameter affects generated code.

“Summary of Block Implementations” on page 5-3 lists
supported blocks and their implementations and parameters.

You can use the hdlnewforeach function to obtain the
parameter names for selected block(s) in a model. See
“Specifying Block Implementations and Parameters in the
Control File” on page 17-18.
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Argument Type Description

modelscopes String
or cell
array
of
strings

Strings defining one or more Simulink paths:

{'path1' 'path2'...'pathN'}

Each path defines a modelscope: a set of blocks that
participate in an implementation mapping. The set of
blocks in a modelscope could include the entire model, all
blocks at a specified level of the model, or a specific block or
subsystem. A path terminating in a wildcard ('*') includes
all blocks at or below the model level specified by the path.
You can use the period (.) to represent the root-level model
at the top of a modelscope, instead of explicitly coding the
model name. For example: './subsyslevel/block'. See
also “Representation of the Root Model in modelscopes”
on page 17-12 and “Resolution of modelscopes” on page
17-13.Syntax for modelscope paths is

• 'model/*': all blocks in the model

• 'model/subsyslevel/block': a specific block within a
specific level of the model

• 'model/subsyslevel/subsystem': a specific subsystem
block within a specific level of the model

• 'model/subsyslevel/*': any block within a specific
model level

Representation of the Root Model in modelscopes
You can represent the root-level model at the top of a modelscope as:

• The full model name, as in the following listing:

cfg.forEach( 'aModel/Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'default');

If you explicitly code the model name in a modelscope, and then save the
model under a different name, the control file becomes invalid because it
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references the previous model name. It is then necessary to edit the control
file and change all such modelscopes to reference the new model.

• The period (.) character, representing the current model as an abstraction,
as in the following listing:

cfg.forEach( './Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'Cascade');

If you represent the model in this way, and then save the model under a
different name, the control file does not require any change. Using the
period to represent the root-level model makes the modelscope independent
of the model name, and therefore more portable.

When you save HDL code generation settings to a control file, the period is
used to represent the root-level model.

Resolution of modelscopes
A possible conflict exists in the forEach specifications in the following
example:

% 1. Use default (multipliers) Gain block implementation

% for one specific Gain block within OneD_DCT8 subsystem

c.forEach('./OneD_DCT8/Gain14',...

'built-in/Gain', {},...

'default', {});

% 2. Use factored CSD Gain optimization

% for all Gain blocks at or below level of OneD_DCT8 subsystem.

c.forEach('./OneD_DCT8/*',...

'built-in/Gain', {},...

'default', {'ConstMultiplierOptimization','FCSD'});

The first forEach call defines an implementation mapping for a specific
block within the subsystem OneD_DCT8. The second forEach call specifies a
non-default implementation parameter ('ConstMultiplierOptimization')
for all blocks within or below the subsystem OneD_DCT8.
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The coder resolves such ambiguities by always giving higher priority to the
more specific modelscope. In the example, the first modelscope is the more
specific.

Five levels of modelscope priority from most specific (1) to least specific (5)
are defined:

1 A/B/C/block

2 A/B/C/*

3 A/B/*

4 *

5 Unspecified. Use the default implementation.

forAll
This method is a shorthand form of forEach. Only one modelscope path is
specified. The modelscope argument is specified as a string (not a cell array)
and it is implicitly terminated with'/*'. The syntax is

object.forAll('modelscope', ...
'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

All other arguments are the same as those described for “forEach” on page
17-9.

set
The set method sets one or more code generation properties. The syntax is

object.set('PropertyName', PropertyValue,...)

The argument list specifies one or more code generation options as
property/value pairs. You can set any of the code generation properties
documented in Chapter 18, “Properties — Alphabetical List”, except the
HDLControlFiles property.
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Note If you specify the same property in both your control file and your
makehdl command, the property will be set to the value specified in the
control file.

Likewise, when generating code via the GUI, if you specify the same property
in both your control file and the HDL Coder options panes, the property will
be set to the value specified in the control file.

generateHDLFor
This method selects the model or subsystem from which code is to be
generated. The syntax is

object.generateHDLFor('simulinkpath')

The argument is a string specifying the full path to the model or subsystem
from which code is to be generated.

To make your control files more portable, you can represent the root-level
model in the path as an abstraction, as in the following example:

function c = newforeachexamp
c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.
c.generateHDLFor('./symmetric_fir');
...

The above generateHDLFor call is valid for any model containing a subsystem
named symmetric_fir at the root level.

Use of this method is optional. You can specify the same parameter in the
Generate HDL for menu in the HDL Coder pane of the Configuration
Parameters dialog box, or in a makehdl command.
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hdlnewcontrolfile
The coder provides the hdlnewcontrolfile utility to help you construct
code generation control files. Given a selection of one or more blocks from
your model, hdlnewcontrolfile generates a control file containing forEach
statements and comments providing information about all supported
implementations and parameters, for all selected blocks. The generated
control file is automatically opened in the MATLAB editor for further
customization. See the hdlnewcontrolfile function reference page for
details.
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Using Control Files in the Code Generation Process

In this section...

“Where to Locate Your Control Files” on page 17-17

“Making Your Control Files More Portable” on page 17-17

Where to Locate Your Control Files
Before you create a control file or use a control file in code generation, be sure
to observe the following requirements for the location of control files:

• A control file must be stored in a folder that is in the MATLAB path, or
the current working folder.

• Do not locate a control file within the MATLAB tree, because it could be
overwritten by subsequent MATLAB installations.

Making Your Control Files More Portable
It can be advantageous to code your control files so that they are independent
of any particular model name. To do this, use the period (.) to represent the
root-level model at the beginning of all modelscope paths. For example:

cfg.forEach( './Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'Cascade');

If you code modelscopes in this way, all modelscopes are interpreted as
references to the current model, rather than as references to an explicitly
named model. Therefore, you can save your model under a different name,
and all references to the root-level model will be valid.
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Specifying Block Implementations and Parameters in the
Control File

In this section...

“Overview” on page 17-18

“Generating Selection/Action Statements with the hdlnewforeach Function”
on page 17-19

Overview
The coder provides a default HDL block implementation for all supported
blocks. In addition, the coder provides selectable alternate HDL block
implementations for several block types. Using selection/action statements
(forEach or forAll method calls) in a control file, you can specify the block
implementation to be applied to all blocks of a given type (within a specific
modelscope) during code generation. For many implementations, you can
also pass in implementation parameters that provide additional control over
code generation details.

You select HDL block implementations by specifying the implementation
name as a string. Chapter 4, “Specifying Block Implementations and
Parameters for HDL Code Generation” summarizes all supported blocks,
their implementation names, and implementation parameters. Pass in
the implementation name and implementation parameters (if any) to the
implementation argument of a forEach or forAll call. The following example
specifies the Tree implementation for all Sum blocks in a model, with 2
output pipeline stages.

config.forEach('*',...
'built-in/Sum', {},...
'Tree', {'OutputPipeline', 2});

Given the implementation name, the coder calls the appropriate code
generation method. You do not need to know any internal details of the
implementation classes.
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Generating Selection/Action Statements with the
hdlnewforeach Function
Determining the block path, type, implementation specification, and
implementation parameters for a large number of blocks in a model can be
time-consuming. Use the hdlnewforeach function to create selection/action
statements in your control files. Given a selection of one or more blocks from
your model, hdlnewforeach returns the following for each selected block, as
string data in the MATLAB workspace:

• A forEach call coded with the correct modelscope , blocktype, and default
implementation arguments for the block

• (Optional) A cell array of strings enumerating the available
implementations for the block.

• (Optional) A cell array of strings enumerating the names of implementation
parameters (if any) corresponding to the block implementations.
hdlnewforeach does not list data types and other details of block
implementation parameters. These details are described in “Block
Implementation Parameters” on page 5-60.

Having generated this information, you can copy and paste the strings into
your control file.

hdlnewforeach Example
This example uses hdlnewforeach to construct a forEach call that specifies
generation of two output pipeline stages after the output of a selected Sum
block within the sfir_fixed demo model. To create the control file:

1 In the MATLAB Command Window, select File > New > Blank M-File.
The MATLAB Editor opens an empty file.

2 Create a skeletal control file by entering the following code into the
MATLAB Editor window:

function c = newforeachexamp

c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.

c.generateHDLFor('sfir_fixed/symmetric_fir');
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% INSERT FOREACH CALL BELOW THIS LINE.

3 Save the file as newforeachexamp.m.

4 Open the sfir_fixed demo model.

5 Close the checkhdl report window and activate the sfir_fixed model
window.

6 In the symmetric_fir subsystem window, select the Add4 block, as shown
in the following figure.

Now you are ready to generate a forEach call for the selected block:

1 Type the following command at the MATLAB prompt.

[cmd,impl,parms] = hdlnewforeach(gcb)

2 The command returns the following results:

c.forEach('./symmetric_fir/Add4',...
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'built-in/Sum', {},...

'default', {}); % Default architecture is 'Linear'

impl =

{3x1 cell}

parms =

{1x2 cell} {1x2 cell} {1x2 cell}

The first return value, cmd, contains the generated forEach call. The
forEach call specifies the default implementation for the Sum block,
specified as 'default'. Also by default, no parameters are passed in for
this implementation.

3 The second return value, impl, is a cell array containing three strings
representing the available implementations for the Sum block. The
following example lists the contents of the impl array:

impl{1}

ans =

'Linear'

'Cascade'

'Tree'

See the table Built-In/Sum on page 5-38 for information about these
implementations.

4 The third return value, parms, is a cell array containing three strings
that represent the available implementations parameters corresponding to
the previously listed Sum block implementations. The following example
lists the contents of the parms array:

parms{1:3}

17-21



17 Code Generation Control Files

ans =

'InputPipeline' 'OutputPipeline'

ans =

'InputPipeline' 'OutputPipeline'

ans =

'InputPipeline' 'OutputPipeline'

This listing shows that each of the Sum block implementations has two
parameters, 'InputPipeline' and 'OutputPipeline'. This indicates that
parameter/value pairs of the form {'OutputPipeline',val} can be passed
in with any of the Sum block implementations.

hdlnewforeach does not provide information about the data type, valid
range, or other constraints on val. Some implementation parameters take
numeric values, while others take strings. See “Block Implementation
Parameters” on page 5-60 for details on implementation parameters.

5 Copy the three lines of forEach code from the MATLAB Command Window
and paste them into the end of your newforeachexamp.m file:

% INSERT FOREACH CALL BELOW THIS LINE.

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...

'default', {}); % Default architecture is 'Linear'

6 In this example, you will specify the default Sum block implementation for
the Add4 block, but with generation of two output pipeline stages before the
final output. To do this, pass in the 'OutputPipeline' parameter with a
value of 2. Modify the final line of the forEach call in your control file:

% INSERT FOREACH CALL BELOW THIS LINE.

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...
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'default', {'OutputPipeline', 2}); % Default architecture is 'Linear'

7 Save the control file.

8 The following code shows the complete control file:

function c = newforeachexamp

c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.

c.generateHDLFor('sfir_fixed/symmetric_fir');

% INSERT FOREACH CALLS HERE.

c.forEach('sfir_fixed/symmetric_fir/Add4',...

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...

'default', {'OutputPipeline', 2}); % Default architecture is 'Linear'

Note For convenience, hdlnewforeach supports a more abbreviated syntax
than that used in the previous example. See the hdlnewforeach reference
page.

17-23



17 Code Generation Control Files

Generating Black Box Control Statements Using
hdlnewblackbox

The hdlnewblackbox function provides a simple way to create the control file
statements that are required to generate black box interfaces for one or more
subsystems. hdlnewblackbox is similar to hdlnewforeach ).

Given a selection of one or more subsystems from your model, hdlnewblackbox
returns the following as string data in the MATLAB workspace for each
selected subsystem:

• A forEach call coded with the correct modelscope, blocktype, and default
implementation class (SubsystemBlackBoxHDLInstantiation) arguments
for the block.

• (Optional) A cell array of strings enumerating the available
implementations classes for the subsystem.

• (Optional) A cell array of cell arrays of strings enumerating the names of
implementation parameters (if any) corresponding to the implementation
classes. hdlnewblackbox does not list data types and other details of
implementation parameters.

See hdlnewblackbox for the full syntax description of the function.

As an example, suppose that you want to generate black box control file
statements for the subsystem gencode from the subsystst model. Using
hdlnewblackbox, you can do this as follows:

1 Activate the subsystst/top subsystem window.

2 Select the subsystems for which you want to create control statements. In
the following figure, gencode is selected.
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3 Deselect the subsystst/top subsystem.

4 Type the following command at the MATLAB prompt:

[cmd,impl,parms] = hdlnewblackbox

5 The command returns the following results:

cmd =

c.forEach('subsystst/top/gencode',...

'built-in/SubSystem', {},...

'BlackBox', {});

impl =

{4x1 cell}

parms =

{} {1x11 cell} {1x12 cell} {1x11 cell}

The first return value, cmd, contains the generated forEach call. The
forEach call specifies the default back box implementation for the
subsystem blocks: BlackBox. Also by default, no parameters are passed
in for this implementation.
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6 The second return value, impl, is a cell array containing three strings
listing available implementations for the Subsystem block. The following
example lists the contents of the impl array:

>> impl{1}

ans =

'hdldefaults.NoHDLEmission'

'hdldefaults.SubsystemBlackBoxHDLInstantiation'

'hdldefaults.XilinxBlackBoxHDLInstantiation'

'hdldefaults.AlteraDSPBuilderBlackBox'

7 The third return value, parms, is a cell array containing strings that
represent the available implementations parameters corresponding to
the previously listed Subsystem block implementations. The parameters
of interest in this case are those available for BlackBox. These are
enumerated in parms{2}, as shown in the following listing:

parms{1}

ans =

Columns 1 through 4

'ClockInputPort' [1x20 char] 'ResetInputPort' 'AddClockPort'

Columns 5 through 9

'AddClockEnablePort' 'AddResetPort' [1x20 char] [1x20 char] 'EntityName'

Columns 10 through 11

'InputPipeline' 'OutputPipeline'

Implementation parameters for subsystems and other black box interface
classes are described in “Customizing the Generated Interface” on page
11-43.

8 Having generated this information, you can now copy and paste the strings
into a control file.
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BalanceDelays

Purpose Enable delay balancing

Settings 'on'

Enable delay balancing.

'off' (default)

Disable delay balancing.

Usage
Notes

A common problem is that optimizations can introduce delays along the
critical path in a model, but equivalent delays are not introduced on
other, parallel signal paths. This can introduce differences in numerics
between the original model and the generated model and HDL code.
Manual insertion of compensating delays along the other paths is
possible, but is error-prone and does not scale well to very large models
with many signal paths.

To help you solve this problem, the coder supports delay balancing.
When you enable delay balancing, if the coder detects introduction
of new delays along one path, it ensures that matching delays are
inserted on all other paths. When delay balancing is enabled, the coder
guarantees that the generated model is functionally equivalent to the
original model.

See Also “Delay Balancing” on page 8-37
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BlockGenerateLabel

Purpose Specify string to append to block labels used for HDL GENERATE
statements

Settings 'string'

Default: '_gen'

Specify a postfix string to append to block labels used for HDL GENERATE
statements.

See Also InstanceGenerateLabel, OutputGenerateLabel
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CastBeforeSum

Purpose Enable or disable type casting of input values for addition and
subtraction operations before execution of operation

Settings 'on'(default)

Typecast input values in addition and subtraction operations to the
result type before operating on the values.

'off'

Preserve the types of input values during addition and subtraction
operations and then convert the result to the result type.

See Also InlineConfigurations, LoopUnrolling, SafeZeroConcat,
UseAggregatesForConst, UseRisingEdge, UseVerilogTimescale
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CheckHDL

Purpose Check model or subsystem for HDL code generation compatibility

Settings 'on'

Check the model or subsystem for HDL compatibility before generating
code, and report any problems encountered. This is equivalent to
executing the checkhdl function before calling makehdl.

'off' (default)

Do not check the model or subsystem for HDL compatibility before
generating code.

See Also checkhdl, makehdl
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ClockEnableInputPort

Purpose Name HDL port for model’s clock enable input signals

Settings 'string'

Default: 'clk_enable'

The string specifies the name for the model’s clock enable input port.

If you override the default with (for example) the string
'filter_clock_enable' for the generating subsystem filter_subsys,
the generated entity declaration might look as follows:

ENTITY filter_subsys IS

PORT( clk : IN std_logic;

filter_clock_enable : IN std_logic;

reset : IN std_logic;

filter_subsys_in : IN std_logic_vector (15 DOWNTO 0);

filter_subsys_out : OUT std_logic_vector (15 DOWNTO 0);

);

END filter_subsys;

If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid
VHDL or Verilog identifier. For example, if you specify the reserved
word signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

Usage
Notes

The clock enable signal is asserted active high (1). Thus, the input value
must be high for the generated entity’s registers to be updated.

See Also ClockInputPort, InputType, OutputType, ResetInputPort
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ClockEnableOutputPort

Purpose Specify name of clock enable output port

Settings 'string'

Default: 'ce_out'

The string specifies the name for the generated clock enable output port.

A clock enable output is generated when the design requires one.

18-7



ClockHighTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals high (1)

Settings ns

Default: 5

The clock high time is expressed as a positive integer or double (with a
maximum of 6 significant digits after the decimal point).

The ClockHighTime and ClockLowTime properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a
square wave (50% duty cycle) with a period of 10 ns.

Usage
Notes

The coder ignores this property if ForceClock is set to 'off'.

See Also ClockLowTime, ForceClock, ForceClockEnable, ForceReset, HoldTime

18-8



ClockInputs

Purpose Specify generation of single or multiple clock inputs

Settings 'Single' (Default)

Generates a single clock input for the DUT. If the DUT is multirate,
the input clock is the master clock rate, and a timing controller is
synthesized to generate any additional clocks as necessary.

'Multiple'

Generates a unique clock for each Simulink rate in the DUT. The
number of timing controllers generated depends on the contents of the
DUT.

Usage
Notes

The oversample factor must be 1 (default) to specify multiple clocks.

Example The following example specifies the generation of multiple clocks.

makehdl(gcb, 'ClockInputs','Multiple');
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ClockInputPort

Purpose Name HDL port for model’s clock input signals

Settings 'string'

Default: 'clk'.

The string specifies the clock input port name.

If you override the default with (for example) the string 'filter_clock'
for the generated entity my_filter, the generated entity declaration
might look as follows:

ENTITY my_filter IS

PORT( filter_clock : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

my_filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15

my_filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15

);

END my_filter;

If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid
VHDL or Verilog identifier. For example, if you specify the reserved
word signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

See Also ClockEnableInputPort, InputType, OutputType
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ClockLowTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals low (0)

Settings Default: 5

The clock low time is expressed as a positive integer or double (with a
maximum of 6 significant digits after the decimal point).

The ClockHighTime and ClockLowTime properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a
square wave (50% duty cycle) with a period of 10 ns.

Usage
Notes

The coder ignores this property if ForceClock is set to 'off'.

See Also ClockHighTime, ForceClock, ForceClockEnable, ForceReset,
HoldTime
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ClockProcessPostfix

Purpose Specify string to append to HDL clock process names

Settings 'string'

Default: '_process'.

The coder uses process blocks for register operations. The label for each
of these blocks is derived from a register name and the postfix _process.
For example, the coder derives the label delay_pipeline_process in
the following block declaration from the register name delay_pipeline
and the default postfix string _process:

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

.

.

.

See Also PackagePostfix, ReservedWordPostfix
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CodeGenerationOutput

Purpose Control production of generated code and display of generated model

Settings 'string'

Default: 'GenerateHDLCode'

Generate code but do not display the generated model.

'GenerateHDLCodeAndDisplayGeneratedModel'

Generate both code and model, and display model when completed.

'DisplayGeneratedModelOnly'

Create and display generated model, but do not proceed to code
generation.

See Also “Defaults and Options for Generated Models” on page 9-10
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ComplexImagPostfix

Purpose Specify string to append to imaginary part of complex signal names

Settings 'string'

Default: '_im'.

See Also ComplexRealPostfix
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ComplexRealPostfix

Purpose Specify string to append to real part of complex signal names

Settings 'string'

Default: 're'.

See Also ComplexImagPostfix
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DateComment

Purpose Specify whether or not to include time/date information in the generated
HDL file header

Settings 'on' (default)

Include time/date information in the generated HDL file header.

-- ----------------------------------------------------
--
-- File Name: hdlsrc\symmetric_fir.vhd
-- Created: 2011-02-14 07:21:36
--
-- Generated by MATLAB 7.12 and Simulink HDL Coder 2.1

'off'

Omit time/date information in the generated HDL file header.

-- ----------------------------------------------------
--
-- File Name: hdlsrc\symmetric_fir.vhd
--
-- Generated by MATLAB 7.12 and Simulink HDL Coder 2.1

By omitting the time/date information in the file header, you can more
easily determine if two HDL files contain identical code. You can also
avoid extraneous revisions of the same file when checking in HDL files
to a source code management (SCM) system.
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EDAScriptGeneration

Purpose Enable or disable generation of script files for third-party tools

Settings 'on' (default)

Enable generation of script files.

'off'

Disable generation of script files.

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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EnablePrefix

Purpose Specify base name string for internal clock enables in generated code

Settings 'string'

Default: 'enb'

Specify the string used as the base name for internal clock enables and
other flow control signals in generated code.

Usage
Notes

Where only a single clock enable is generated, EnablePrefix specifies
the signal name for the internal clock enable signal.

In some cases multiple clock enables are generated (for example, when
a cascade block implementation for certain blocks is specified). In such
cases, EnablePrefix specifies a base signal name for the first clock
enable that is generated. For other clock enable signals, numeric tags
are appended to EnablePrefix to form unique signal names. For
example, the following code fragment illustrates two clock enables that
were generated when EnablePrefix was set to 'test_clk_enable' :

COMPONENT mysys_tc
PORT( clk : IN std_logic;

reset : IN std_logic;
clk_enable : IN std_logic;
test_clk_enable : OUT std_logic;
test_clk_enable_5_1_0 : OUT std_logic
);

END COMPONENT;
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EntityConflictPostfix

Purpose Specify string to append to duplicate VHDL entity or Verilog module
names

Settings 'string'

Default: 'block'

The specified postfix resolves duplicate VHDL entity or Verilog module
names.

For example, if the coder detects two entities with the name MyFilt,
the coder names the first entity MyFilt and the second instance
MyFilt_block.

See Also PackagePostfix, ReservedWordPostfix
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ForceClock

Purpose Specify whether test bench forces clock input signals

Settings 'on' (default)

Specify that the test bench forces the clock input signals. When this
option is set, the clock high and low time settings control the clock
waveform.

'off'

Specify that a user-defined external source forces the clock input
signals.

See Also ClockLowTime, ClockHighTime, ForceClockEnable, ForceReset,
HoldTime
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ForceClockEnable

Purpose Specify whether test bench forces clock enable input signals

Settings 'on' (default)

Specify that the test bench forces the clock enable input signals to
active high (1) or active low (0), depending on the setting of the clock
enable input value.

'off'

Specify that a user-defined external source forces the clock enable input
signals.

See Also ClockHighTime, ClockLowTime, ForceClock, HoldTime
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ForceReset

Purpose Specify whether test bench forces reset input signals

Settings 'on' (default)

Specify that the test bench forces the reset input signals. If you enable
this option, you can also specify a hold time to control the timing of
a reset.

'off'

Specify that a user-defined external source forces the reset input
signals.

See Also ClockHighTime, ClockLowTime, ForceClock, HoldTime
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GenerateCoSimBlock

Purpose Generate model containing HDL Cosimulation block(s) for use in
testing DUT

Settings 'on'

If your installation includes one or more of the following HDL simulation
features, the coder generates and opens a model that contains an HDL
Cosimulation block for each:

• EDA Simulator Link for use with Mentor GraphicsModelSim

• EDA Simulator Link for use with Cadence Incisive

• EDA Simulator Link for use with Synopsys Discovery

Note Support for Synopsys Discovery will be removed in a future
release. The Discovery HDL Cosimulation block is supported in
R2011a for backward compatibility only.

The coder configures the generated HDL Cosimulation blocks to
conform to the port and data type interface of the DUT selected for code
generation.. By connecting an HDL Cosimulation block to your model
in place of the DUT, you can cosimulate your design with the desired
simulator.

The coder appends the string (if any) specified by the CosimLibPostfix
property to the names of the generated HDL Cosimulation blocks.

'off' (default)

Do not generate HDL Cosimulation blocks.

18-23



GenerateCoSimModel

Purpose Generate model containing HDL Cosimulation block for use in testing
DUT

Settings 'ModelSim' (default)

If your installation includes EDA Simulator Link for use with
Mentor GraphicsModelSim, the coder generates and opens a
Simulink model that contains an HDL Cosimulation block for Mentor
GraphicsModelSim.

'Incisive'

If your installation includes EDA Simulator Link for use with Cadence
Incisive, the coder generates and opens a Simulink model that contains
an HDL Cosimulation block for Cadence Incisive.

See Also “Generating a Simulink Model for Cosimulation with an HDL
Simulator” on page 11-20
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Generatedmodelname

Purpose Specify name of generated model

Settings 'string'

By default, the name of a generated model is the same as that of the
original model. Assign a string value to Generatemodelname to override
the default.

See Also “Defaults and Options for Generated Models” on page 9-10
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Generatedmodelnameprefix

Purpose Specify prefix to name of generated model

Settings 'string'

Default: 'gm_'

The specified string is prepended to the sanme of the generated model.

See Also “Defaults and Options for Generated Models” on page 9-10
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GenerateValidationModel

Purpose Generate validation model with HDL code

Settings 'on'

Generate a validation model that highlights generated delays and other
differences between your original model and the generated model.
A validation model is particularly use or for observing the effect of
streaming, resource sharing, and delay balancing.

'off' (default)

Do not generate a validation model.

See Also Chapter 8, “Streaming, Resource Sharing, and Delay Balancing”
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HandleAtomicSubsystem

Purpose Enable reusable code generation for identical atomic subsystems

Settings 'on' (default)

Generate reusable code for identical atomic subsystems.

'off'

Do not generate reusable code for identical atomic subsystems.

See Also “Generating Reusable Code for Atomic Subsystems” on page 11-8

18-28



HDLCompileInit

Purpose Specify string written to initialization section of compilation script

Settings 'string'

Default: 'vlib work\n'.

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLCompileTerm

Purpose Specify string written to termination section of compilation script

Settings 'string'

The default is the null string ('').

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLCompileFilePostfix

Purpose Specify postfix string appended to file name for generated Mentor
Graphics ModelSim compilation scripts

Settings 'string'

Default:'_compile.do'.

For example, if the name of the device under test or test bench is
my_design, the coder adds the postfix _compile.do to form the name
my_design_compile.do.
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HDLCompileVerilogCmd

Purpose Specify command string written to compilation script for Verilog files

Settings 'string'

Default: 'vlog %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLCompileVHDLCmd

Purpose Specify command string written to compilation script for VHDL files

Settings 'string'

Default: 'vcom %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLControlFiles

Purpose Attach code generation control file to model

Settings {'string'}

Pass in a cell array containing a string that specifies a control file to
be attached to the current model. Defaults are

• File name extension: .m

• Location of file: the control file must be on the MATLAB path or in
the current working folder. Therefore you need only specify the file
name; do not specify path information.

The following example specifies a control file, using the default for
the file name extension.

makehdl(gcb, 'HDLControlFiles', {'dct8config'});

Specify a control file that is on the MATLAB path, or in the current
working folder. If necessary, you should modify the MATLAB path
such that the desired control file is on the path before generating
code. Then attach the control file to the model.

Note The current release supports specification of a single control file.

Usage
Notes

To clear the property (so that no control file is invoked during code
generation), pass in a cell array containing the null string, as in the
following example:

makehdl(gcb,'HDLControlFiles',{''});

See Also For a detailed description of the structure and use of control files, see
Chapter 17, “Code Generation Control Files”.
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HDLMapPostfix

Purpose Specify postfix string appended to file name for generated mapping file

Settings 'string'

Default: '_map.txt'.

For example, if the name of the device under test is my_design, the
coder adds the postfix _map.txt to form the name my_design_map.txt.
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HDLSimCmd

Purpose Specify simulation command written to simulation script

Settings 'string'

Default: 'vsim -novopt work.%s\n'.

The implicit argument is the top-level module or entity name.

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSimInit

Purpose Specify string written to initialization section of simulation script

Settings 'string'

The default string is

['onbreak resume\n',...
'onerror resume\n']

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSimFilePostfix

Purpose Specify postfix string appended to file name for generated Mentor
Graphics ModelSim simulation scripts

Settings 'string'

Default: _sim.do.

For example, if the name of your test bench file is my_design, the coder
adds the postfix _sim.do to form the name my_design_tb_sim.do.

18-38



HDLSimTerm

Purpose Specify string written to termination section of simulation script

Settings 'string'

Default: 'run -all\n'.

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSimViewWaveCmd

Purpose Specify waveform viewing command written to simulation script

Settings 'string'

Default: 'add wave sim:%s\n'

The implicit argument is the top-level module or entity name.

See Also Chapter 14, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSynthCmd

Purpose Specify command written to synthesis script

Settings 'string'

Default: none.

Your choice of synthesis tool (see SynthToolOption) sets the synthesis
command string. The default string is a format string passed to
fprintf to write the Cmd section of the synthesis script. The implicit
argument is the top-level module or entity name. The content of the
string is specific to the selected synthesis tool.

See Also SynthToolOption, Chapter 14, “Generating Scripts for HDL Simulators
and Synthesis Tools”
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HDLSynthFilePostfix

Purpose Specify postfix string appended to file name for generated synthesis
scripts

Settings 'string'

Default: The value of HDLSynthFilePostfix normally defaults
to a string that is appropriate to the synthesis tool specified by
SynthToolOption (see SynthToolOption).

For example, if the value of SynthToolOption is 'Synplify',
HDLSynthFilePostfix defaults to the string '_synplify.tcl'. Then,
if the name of the device under test is my_design, the coder adds
the postfix _synplify.tcl to form the synthesis script file name
my_design_synplify.tcl.

See Also SynthToolOption, Chapter 14, “Generating Scripts for HDL Simulators
and Synthesis Tools”
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HDLSynthInit

Purpose Specify string written to initialization section of synthesis script

Settings 'string'

Default: none

Your choice of synthesis tool (see SynthToolOption) sets the synthesis
initialization string. The default string is a format string passed to
fprintf to write the Init section of the synthesis script. The default
string is a synthesis project creation command. The implicit argument
is the top-level module or entity name. The content of the string is
specific to the selected synthesis tool.

See Also SynthToolOption, Chapter 14, “Generating Scripts for HDL Simulators
and Synthesis Tools”
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HDLSynthTerm

Purpose Specify string written to termination section of synthesis script

Settings 'string'

Default: none

Your choice of synthesis tool (see SynthToolOption) sets the synthesis
termination string. The default string is a format string passed to
fprintf to write the Term section of the synthesis script. The Term
section takes no argumentThe content of the string is specific to the
selected synthesis tool.

See Also SynthToolOption, Chapter 14, “Generating Scripts for HDL Simulators
and Synthesis Tools”

18-44



Highlightancestors

Purpose Highlight ancestors of blocks in generated model that differ from
original model

Settings 'on' (default)

Highlight blocks in a generated model that differ from the original
model, and their ancestor (parent) blocks in the model hierarchy.

'off'

Highlight only the blocks in a generated model that differ from the
original model without highlighting their ancestor (parent) blocks in
the model hierarchy.

See Also “Defaults and Options for Generated Models” on page 9-10
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Highlightcolor

Purpose Specify color for highlighted blocks in generated model

Settings 'string'

Default: 'cyan'.

Specify the color as one of the following color string values:

• 'cyan'

• 'yellow'

• 'magenta'

• 'red'

• 'green'

• 'blue'

• 'white'

• 'black'

See Also “Defaults and Options for Generated Models” on page 9-10
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HoldInputDataBetweenSamples

Purpose Specify how long subrate signal values are held in valid state

Settings 'on' (default)

Data values for subrate signals are held in a valid state across N
base-rate clock cycles, where N is the number of base-rate clock cycles
that elapse per subrate sample period. (N is >= 2.)

'off'

Data values for subrate signals are held in a valid state for only one
base-rate clock cycle. For the subsequent base-rate cycles, data is in an
unknown state (expressed as 'X') until leading edge of the next subrate
sample period.

Usage
Notes

In most cases, the default ('on') is the correct setting for this property.
This setting matches the behavior of a Simulink simulation, in which
subrate signals are always held valid through each base-rate clock
period.

In some cases (for example modeling memory or memory interfaces),
it is desirable to set HoldInputDataBetweenSamples to 'off'. In this
way you can obtain diagnostic information about when data is in an
invalid ('X') state.

See Also HoldTime, Chapter 6, “Generating HDL Code for Multirate Models”
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HoldTime

Purpose Specify hold time for input signals and forced reset input signals

Settings ns

Default: 2

Specify the number of nanoseconds during which the model’s data input
signals and forced reset input signals are held past the clock rising edge.

The hold time is expressed as a positive integer or double (with a
maximum of 6 significant digits after the decimal point).

This option applies to reset input signals only if forced resets are
enabled.

Usage
Notes

The hold time is the amount of time that reset input signals and input
data are held past the clock rising edge. The following figures show the
application of a hold time (thold) for reset and data input signals when
the signals are forced to active high and active low.
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Hold Time for Reset Input Signals
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Hold Time for Data Input Signals

Note A reset signal is always asserted for two cycles plus thold.

See Also ClockHighTime, ClockLowTime, ForceClock
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IgnoreDataChecking

Purpose Specify number of samples during which output data checking is
suppressed

Settings N

Default: 0.

N must be a positive integer.

When N > 0, the test bench suppresses output data checking for the
first N output samples after the clock enable output (ce_out) is asserted.

Usage
Notes

When using pipelined block implementations, output data may be in
an invalid state for some number of samples. To avoid spurious test
bench errors, determine this number and set IgnoreDataChecking
accordingly.

Be careful to specify N correctly as a number of samples, not as a
number of clock cycles. For a single-rate model, these are equivalent,
but they are not equivalent for a multirate model.

You should use IgnoreDataChecking in cases where there is any state
(register) initial condition in the HDL code that does not match the
Simulink state, including the following specific cases:

• When you specify the'DistributedPipelining','on' parameter for
the MATLAB Function block (see “Distributed Pipeline Insertion for
MATLAB Function Blocks” on page 13-53).

• When you specify the 'ResetType','None' parameter
(see“ResetType” on page 5-90 ) for any of the following block types:

- commcnvintrlv2/Convolutional Deinterleaver

- commcnvintrlv2/Convolutional Interleaver

- commcnvintrlv2/General Multiplexed Deinterleaver

- commcnvintrlv2/General Multiplexed Interleaver

- dspsigops/Delay
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IgnoreDataChecking

- simulink/Additional Math & Discrete/Additional Discrete/Unit
Delay Enabled

- simulink/Commonly Used Blocks/Unit Delay

- simulink/Discrete/Integer Delay

- simulink/Discrete/Memory

- simulink/Discrete/Tapped Delay

- simulink/User-Defined Functions/MATLAB Function

- sflib/Chart

- sflib/Truth Table

• When generating a black box interface to existing manually-written
HDL code.
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InitializeBlockRAM

Purpose Enable or suppress generation of initial signal value for RAM blocks

Settings 'on' (default)

For RAM blocks, generate initial values of all '0' bits for both the RAM
signal and the output temporary signal.

'off'

For RAM blocks, do not generate initial values for either the RAM
signal or the output temporary signal.

Usage
Notes

This property applies to all types of RAM blocks in the hdldemolib
library (see also “RAM Blocks” on page 7-4). The library provides three
type of RAM blocks:

• Dual Port RAM

• Simple Dual Port RAM

• Single Port RAM

See Also

IgnoreDataChecking

18-52



InitializeTestBenchInputs

Purpose Specify initial value driven on test bench inputs before data is asserted
to DUT

Settings 'on'

Initial value driven on test bench inputs is'0'.

'off' (default)

Initial value driven on test bench inputs is 'X' (unknown).
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InlineConfigurations

Purpose Specify whether generated VHDL code includes inline configurations

Settings 'on' (default)

Include VHDL configurations in any file that instantiates a component.

'off'

Suppress the generation of configurations and require user-supplied
external configurations. Use this setting if you are creating your own
VHDL configuration files.

Usage
Notes

VHDL configurations can be either inline with the rest of the VHDL
code for an entity or external in separate VHDL source files. By default,
the coder includes configurations for a model within the generated
VHDL code. If you are creating your own VHDL configuration files, you
should suppress the generation of inline configurations.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge
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InputType

Purpose Specify HDL data type for model’s input ports

Settings Default (for VHDL):'std_logic_vector'

Specifies VHDL type STD_LOGIC_VECTOR for the model’s input ports.

'signed/unsigned'

Specifies VHDL type SIGNED or UNSIGNED for the model’s input ports.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, OutputType
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InstanceGenerateLabel

Purpose Specify string to append to instance section labels in VHDL GENERATE
statements

Settings 'string'

Default: '_gen'

Specify a postfix string to append to instance section labels in VHDL
GENERATE statements.

See Also BlockGenerateLabel, OutputGenerateLabel
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InstancePostfix

Purpose Specify string appended to generated component instance names

Settings 'string'

Default: '' (no postfix appended)

Specify a string to be appended to component instance names in
generated code.
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InstancePrefix

Purpose Specify string prefixed to generated component instance names

Settings 'string'

Default: 'u_'

Specify a string to be prefixed to component instance names in
generated code.
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LoopUnrolling

Purpose Specify whether VHDL FOR and GENERATE loops are unrolled and
omitted from generated VHDL code

Settings 'on'

Unroll and omit FOR and GENERATE loops from the generated VHDL code.

In Verilog code, loops are always unrolled.

If you are using an electronic design automation (EDA) tool that does
not support GENERATE loops, you can enable this option to omit loops
from your generated VHDL code.

'off' (default)

Include FOR and GENERATE loops in the generated VHDL code.

Usage
Notes

The setting of this option does not affect results obtained from
simulation or synthesis of generated VHDL code.

See Also InlineConfigurations, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge
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MinimizeClockEnables

Purpose Omit generation of clock enable logic for single-rate designs.

Settings 'on'

Omit generation of clock enable logic for single-rate designs, wherever
possible (see “Usage Notes” on page 18-60). The following VHDL code
example does not define or examine a clock enable signal. When the
clock signal (clk) goes high, the current signal value is output.

Unit_Delay_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
Unit_Delay_out1 <= to_signed(0, 32);

ELSIF clk'EVENT AND clk = '1' THEN
Unit_Delay_out1 <= In1_signed;

END IF;
END PROCESS Unit_Delay_process;

'off' (default)

Generate clock enable logic. The following VHDL code extract
represents a register with a clock enable (enb)

Unit_Delay_process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
Unit_Delay_out1 <= to_signed(0, 32);

ELSIF clk'EVENT AND clk = '1' THEN
IF enb = '1' THEN

Unit_Delay_out1 <= In1_signed;
END IF;

END IF;
END PROCESS Unit_Delay_process;

Usage
Notes

In some cases, the coder emits clock enables even when
MinimizeClockEnables is 'on'. These cases are:

• Registers inside Enabled, State-Enabled, and Triggered subsystems.
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MinimizeClockEnables

• Multi-rate models.

• The coder always emits clock enables for the following blocks:

- commseqgen2/PN Sequence Generator

- dspsigops/NCO

- dspsrcs4/Sine Wave

- hdldemolib/HDL FFT

- built-in/DiscreteFir

- dspmlti4/CIC Decimation

- dspmlti4/CIC Interpolation

- dspmlti4/FIR Decimation

- dspmlti4/FIR Interpolation

- dspadpt3/LMS Filter

- dsparch4/Biquad Filter

- dsparch4/Digital Filter
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MinimizeIntermediateSignals

Purpose Specify whether to optimize HDL code for debuggability or code coverage

Settings 'on'

Optimize for code coverage by minimizing intermediate signals. For
example, suppose that the generated code with this setting off is:

const3 <= to_signed(24, 7);

subtractor_sub_cast <= resize(const3, 8);

subtractor_sub_cast_1 <= resize(delayout, 8);

subtractor_sub_temp <= subtractor_sub_cast - subtractor_sub_cast_1;

With this setting on, the output code is optimized to:

subtractor_sub_temp <= 24 - (resize(delayout, 8));

The intermediate signals const3, subtractor_sub_cast, and
subtractor_sub_cast_1 are removed.

'off' (default)

Optimize for debuggability by preserving intermediate signals.
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MulticyclePathInfo

Purpose Generate text file that reports multicycle path constraint information,
for use with synthesis tools.

Settings 'on'

Generate a multicycle path information file.

'off' (default)

Do not generate a multicycle path information file.

Usage
Notes

The file name for the multicycle path information file derives from the
name of the DUT and the postfix string '_constraints', as follows:

DUTname_constraints.txt

For example, if the DUT name is symmetric_fir, the name of the
multicycle path information file is symmetric_fir_constraints.txt.

See Also “Generating Multicycle Path Information Files” on page 6-15
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MultifileTestBench

Purpose Divide generated test bench into helper functions, data, and HDL test
bench code files

Settings 'on'

Write separate files for test bench code, helper functions, and test
bench data. The file names are derived from the name of the DUT, the
TestBenchPostfix property, and the TestBenchDataPostfix property
as follows:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target
language is VHDL, the default test bench file names are:

• symmetric_fir_tb.vhd: test bench code

• symmetric_fir_tb_pkg.vhd: helper functions package

• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog,
the default test bench file names are:

• symmetric_fir_tb.v: test bench code

• symmetric_fir_tb_pkg.v: helper functions package

• symmetric_fir_tb_data.v: test bench data

'off' (default)

Write a single test bench file containing all HDL test bench code and
helper functions and test bench data.

See Also TestBenchPostFix, TestBenchDataPostFix
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OptimizationReport

Purpose Display HTML optimization report

Settings 'on'

Create and display an HTML optimization report.

'off' (default)

Do not create an HTML optimization report.

See Also “Creating and Using Code Generation Reports” on page 10-2
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OptimizeTimingController

Purpose Optimize timing controller entity for speed and code size by
implementing separate counters per rate

Settings 'on' (default)

A timing controller code file is generated if required by the design, for
example:

• When code is generated for a multirate model.

• When a cascade block implementation for certain blocks is specified.

This file contains a module defining timing signals (clock, reset,
external clock enable inputs and clock enable output) in a separate
entity or module. In a multirate model, the timing controller entity
generates the required rates from a single master clock using one or
more counters and multiple clock enables.

When OptimizeTimingController is set 'on' (the default), the coder
generates multiple counters (one counter for each rate in the model).
The benefit of this optimization is that it generates faster logic, and the
size of the generated code is usually much smaller.

'off'

When OptimizeTimingController is set 'off', the timing controller
uses one counter to generate all rates in the model.

See Also Chapter 6, “Generating HDL Code for Multirate Models”, EnablePrefix,
TimingControllerPostfix
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OutputGenerateLabel

Purpose Specify string that labels output assignment block for VHDL GENERATE
statements

Settings 'string'

Default: 'outputgen'

Specify a postfix string to append to output assignment block labels
in VHDL GENERATE statements.

See Also BlockGenerateLabel, OutputGenerateLabel
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OutputType

Purpose Specify HDL data type for model’s output ports

Settings 'Same as input data type' (VHDL default)

'std_logic_vector'

Output ports have VHDL type STD_LOGIC_VECTOR.

'signed/unsigned'

Output ports have type SIGNED or UNSIGNED.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, InputType
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Oversampling

Purpose Specify frequency of global oversampling clock as a multiple of the
model’s base rate

Settings N

Default: 1.

N must be an integer greater than or equal to 0.

Oversampling specifies N, the oversampling factor of a global
oversampling clock. The oversampling factor expresses the desired rate
of the global oversampling clock as a multiple of your model’s base rate.

When you specify an oversampling factor, the coder generates the
global oversampling clock and derives the required timing signals from
clock signal. Generation of the global oversampling clock affects only
generated HDL code. The clock does not affect the simulation behavior
of your model.

When you specify the oversampling factor for a global oversampling
clock, note these requirements:

• The oversampling factor must be an integer greater than or equal
to 1.

• The default value is 1. In the default case, the coder does not
generate a global oversampling clock is generated.

• In a multi-rate DUT, all other rates in the DUT must divide evenly
into the global oversampling rate..

See Also “Generating a Global Oversampling Clock” on page 6-9
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PackagePostfix

Purpose Specify string to append to specified model or subsystem name to form
name of package file

Settings 'string'

Default: '_pkg'

The coder applies this option only if a package file is required for the
design.

See Also ClockProcessPostfix, EntityConflictPostfix,
ReservedWordPostfix
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PipelinePostfix

Purpose Specify string to append to names of input or output pipeline registers
generated for pipelined block implementations

Settings 'string'

Default: '_pipe'

When you specify a generation of input and/or output pipeline registers
for selected blocks, the coder appends the string specified by the
PipelinePostfix property when generating code for such pipeline
registers.

For example, suppose you specify a pipelined output implementation for
a Product block in a model, as in the following code:

hdlset_param('sfir_fixed/symmetric_fir/Product','OutputPipeline', 2')

The following makehdl command specifies that the coder
appends'testpipe' to generated pipeline register names.

makehdl(gcs,'PipelinePostfix','testpipe');

The following excerpt from generated VHDL code shows process the
PROCESS code, with postfixed identifiers, that implements two pipeline
stages:

Product_outtestpipe_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Product_outtestpipe_reg <= (OTHERS => to_signed(0, 33));

ELSIF clk'EVENT AND clk = '1' THEN

IF enb = '1' THEN

Product_outtestpipe_reg(0) <= Product_out1;

Product_outtestpipe_reg(1) <= Product_outtestpipe_reg(0);

END IF;

END IF;

END PROCESS Product_outtestpipe_process;
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See Also “Block Implementation Parameters” on page 5-60, “InputPipeline” on
page 5-84, “OutputPipeline” on page 5-85
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RequirementComments

Purpose Enable or disable generation of hyperlinked requirements comments
in HTML code generation reports

Settings 'on' (default)

If the model includes requirements comments, generate hyperlinked
requirements comments within the HTML code generation report. The
comments link to the corresponding requirements documents.

'off'

When generating an HTML code generation report, render requirements
as comments within the generated code

See Also “Creating and Using Code Generation Reports” on page 10-2,
“Annotating Generated Code with Comments and Requirements” on
page 10-27 , Traceability
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ReservedWordPostfix

Purpose Specify string appended to identifiers for entities, signals, constants, or
other model elements that conflict with VHDL or Verilog reserved words

Settings 'string'

Default: '_rsvd'.

The reserved word postfix is applied identifiers (for entities, signals,
constants, or other model elements) that conflict with VHDL or Verilog
reserved words. For example, if your generating model contains a signal
named mod, the coder adds the postfix _rsvd to form the name mod_rsvd.

See Also ClockProcessPostfix, EntityConflictPostfix,
ReservedWordPostfix
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ResetAssertedLevel

Purpose Specify asserted (active) level of reset input signal

Settings 'active-high' (default)

Specify that the reset input signal must be driven high (1) to reset
registers in the model. For example, the following code fragment checks
whether reset is active high before populating the delay_pipeline
register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

'active-low'

Specify that the reset input signal must be driven low (0) to reset
registers in the model. For example, the following code fragment checks
whether reset is active low before populating the delay_pipeline
register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '0' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

See Also ResetType
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ResetInputPort

Purpose Name HDL port for model’s reset input

Settings 'string'

Default: 'reset'.

The string specifies the name for the model’s reset input port. If you
override the default with (for example) the string 'chip_reset' for the
generating system myfilter, the generated entity declaration might
look as follows:

ENTITY myfilter IS

PORT( clk : IN std_logic;

clk_enable : IN std_logic;

chip_reset : IN std_logic;

myfilter_in : IN std_logic_vector (15 DOWNTO 0);

myfilter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END myfilter;

If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid
VHDL or Verilog identifier. For example, if you specify the reserved
word signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

Usage
Notes

If the reset asserted level is set to active high, the reset input signal is
asserted active high (1) and the input value must be high (1) for the
entity’s registers to be reset. If the reset asserted level is set to active
low, the reset input signal is asserted active low (0) and the input value
must be low (0) for the entity’s registers to be reset.

See Also ClockEnableInputPort, InputType, OutputType
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ResetLength

Purpose Define length of time (in clock cycles) during which reset is asserted

Settings N

Default: 2.

N must be an integer greater than or equal to 0.

Resetlength defines N, the number of clock cycles during which reset is
asserted. The following figure illustrates the default case, in which the
reset signal (active-high) is asserted for 2 clock cycles.
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ResetType

Purpose Specify whether to use asynchronous or synchronous reset logic when
generating HDL code for registers

Settings 'async' (default)

Use asynchronous reset logic. The following process block, generated by
a Unit Delay block, illustrates the use of asynchronous resets. When
the reset signal is asserted, the process block performs a reset, without
checking for a clock event.

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

END PROCESS Unit_Delay1_process;

'sync'

Use synchronous reset logic. Code for a synchronous reset follows. The
following process block, generated by a Unit Delay block, checks for a
clock event, the rising edge, before performing a reset:

Unit_Delay1_process : PROCESS (clk)

BEGIN

IF rising_edge(clk) THEN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;
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END PROCESS Unit_Delay1_process;

See Also ResetAssertedLevel
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ResetValue

Purpose Specify constant value to which test bench forces reset input signals

Settings 'active high' (default)

Specify that the test bench set the reset input signal to active high (1).

'active low'

Specify that the test bench set the reset input signal to active low (0).

Usage
Notes

The setting for this option must match the setting of the reset asserted
level specified for the test bench. The coder ignores the setting of this
option if forced resets are disabled.

See Also ForceReset, ResetType, ResetAssertedLevel
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ResourceReport

Purpose Display HTML resource utilization report

Settings 'on'

Create and display an HTML resource utilization report (bill of
materials).

'off' (default)

Do not create an HTML resource utilization report.

See Also “Creating and Using Code Generation Reports” on page 10-2
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SafeZeroConcat

Purpose Specify syntax for concatenated zeros in generated VHDL code

Settings 'on' (default)

Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically,
this syntax is preferred.

'off'

Use the syntax "000000..." for concatenated zeros. This syntax can be
easier to read and is more compact, but it can lead to ambiguous types.

See Also LoopUnrolling, UseAggregatesForConst, UseRisingEdge
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ScalarizePorts

Purpose Flatten vector ports into structure of scalar ports in VHDL code

Settings 'on'

When generating code for a vector port, generate a structure of scalar
ports

'off' (default)

Do not generate a structure of scalar ports for a vector port.

Usage
Notes

The ScalarizePorts property lets you control how the coder generates
VHDL code for vector ports.

For example, consider the subsystem vsum in the following figure.

By default, ScalarizePorts is 'off'. The coder generates a type
definition and port declaration for the vector port In1 like the following:

PACKAGE simplevectorsum_pkg IS

TYPE vector_of_std_logic_vector16 IS ARRAY (NATURAL RANGE <>) OF std_logic_vector(15 DOWNTO 0);

TYPE vector_of_signed16 IS ARRAY (NATURAL RANGE <>) OF signed(15 DOWNTO 0);

END simplevectorsum_pkg;

.

.

.

ENTITY vsum IS

PORT( In1 : IN vector_of_std_logic_vector16(0 TO 9); -- int

Out1 : OUT std_logic_vector(19 DOWNTO 0) -- sfix20

);

18-83



ScalarizePorts

END vsum;

Under VHDL typing rules two types declared in this manner are not
compatible across design units. This may cause problems if you need to
interface two or more generated VHDL code modules.

You can flatten such a vector port into a structure of scalar ports
by enabling ScalarizePorts in your makehdl command, as in the
following example.

makehdl(gcs,'ScalarizePorts','on')

The listing below shows the generated ports.

ENTITY vsum IS

PORT( In1_0 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_1 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_2 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_3 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_4 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_5 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_6 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_7 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_8 : IN std_logic_vector(15 DOWNTO 0); -- int16

In1_9 : IN std_logic_vector(15 DOWNTO 0); -- int16

Out1 : OUT std_logic_vector(19 DOWNTO 0) -- sfix20

);

END vsum;

See Also “Generating Interfaces for Referenced Models” on page 11-13
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SimulatorFlags

Purpose Specify simulator flags to apply to generated compilation scripts

Settings 'string'

Default: ''

Specify options that are specific to your application and the simulator
you are using. For example, if you must use the 1076–1993 VHDL
compiler, specify the flag -93.

Usage
Notes

The flags you specify with this option are added to the compilation
command in generated compilation scripts. The simulation command
string is specified by the HDLCompileVHDLCmd or HDLCompileVerilogCmd
properties.

18-85



SplitArchFilePostfix

Purpose Specify string to append to specified name to form name of file
containing model’s VHDL architecture

Settings 'string'

Default: '_arch'.

This option applies only if you direct the coder to place the generated
VHDL entity and architecture code in separate files.

Usage
Notes

The option applies only if you direct the coder to place the filter’s entity
and architecture in separate files.

See Also SplitEntityArch, SplitEntityFilePostfix
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SplitEntityArch

Purpose Specify whether generated VHDL entity and architecture code is
written to single VHDL file or to separate files

Settings 'on'

Write the generated VHDL code to a single file.

'off'(default)

Write the code for the generated VHDL entity and architecture to
separate files.

The names of the entity and architecture files derive from the base
file name (as specified by the generating model or subsystem name).
By default, postfix strings identifying the file as an entity (_entity)
or architecture (_arch ) are appended to the base file name. You can
override the default and specify your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd,
you can specify that the code reside in MyFIR_entity.vhd and
MyFIR_arch.vhd.

Note This property is specific to VHDL code generation. It does not
apply to Verilog code generation and should not be enabled when
generating Verilog code.

See Also SplitArchFilePostfix, SplitEntityFilePostfix
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SplitEntityFilePostfix

Purpose Specify string to append to specified model name to form name of
generated VHDL entity file

Settings 'string'

Default: '_entity'

This option applies only if you direct the coder to place the generated
VHDL entity and architecture code in separate files.

See Also SplitArchFilePostfix, SplitEntityArch
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SynthToolOption

Purpose Select synthesis tool for which the coder generates scripts.

Settings 'string'

Default: 'none'.

SynthToolOption enables or disables generation of scripts for
third-party synthesis tools. By default, the coder does not generate a
synthesis script. To generate a script for one of the supported synthesis
tools, set SynthToolOption to one of the strings given in the following
table.

Tip The value of SynthToolOption also sets the postfix string
(HDLSynthFilePostfix) that the coder appends to generated synthesis
script file names.

Choice of
SynthToolOption
Value...

Generates Script For... Sets
HDLSynthFilePostfix
To...

none N/A; script generation
disabled

N/A

'ISE' Xilinx ISE '_ise.tcl'

'Precision'Mentor Graphics Precision '_precision.tcl'

'Quartus' Altera Quartus II '_quartus.tcl'

'Synplify' Synopsys Synplify Pro '_synplify.tcl'

See Also HDLSynthFilePostfix, Chapter 14, “Generating Scripts for HDL
Simulators and Synthesis Tools”
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TargetDirectory

Purpose Identify folder into which the coder writes generated output files.

Settings 'string'

Default: 'hdlsrc'

Specify a subfolder under the current working folder into which the
coder writes generated files. The string can specify a complete path
name.

If the target folder does not exist, the coder creates it.

See Also VerilogFileExtension, VHDLFileExtension
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TargetLanguage

Purpose Specify HDL language to use for generated code

Settings 'VHDL' (default)

Generate VHDL filter code.

'verilog'

Generate Verilog filter code.
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TestBenchClockEnableDelay

Purpose Define elapsed time (in clock cycles) between deassertion of reset and
assertion of clock enable

Settings N (integer number of clock cycles) Default: 1

The TestBenchClockEnableDelay property specifies a delay time N,
expressed in base-rate clock cycles ( the default value is 1) elapsed
between the time the reset signal is deasserted and the time the clock
enable signal is first asserted. TestBenchClockEnableDelay works in
conjunction with the HoldTime property; After deassertion of reset,
the clock enable goes high after a delay of N base-rate clock cycles plus
the delay specified by HoldTime.

In the figure below, the reset signal (active-high) deasserts after the
interval labelled Hold Time. The clock enable asserts after a further
interval labelled Clock enable delay.

See Also HoldTime, ResetLength
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TestBenchDataPostFix

Purpose Specify suffix added to test bench data file name when generating
multi-file test bench

Settings 'string'

Default: '_data'.

The coder applies TestBenchDataPostFix only when generating a
multi-file test bench (i.e. when MultifileTestBench is set 'on').

For example, if the name of your DUT is my_test, and
TestBenchPostFix has the default value _tb, the coder adds the postfix
_data to form the test bench data file name my_test_tb_data.

See Also MultifileTestBench, TestBenchPostFix
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TestBenchPostFix

Purpose Specify suffix to test bench name

Settings 'string'

Default: '_tb'.

For example, if the name of your DUT is my_test, the coder adds the
postfix _tb to form the name my_test_tb.

See Also MultifileTestBench, TestBenchDataPostFix
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TimingControllerPostfix

Purpose Specify suffix appended to DUT name to form timing controller name

Settings 'string'

Default: '_tc'.

A timing controller code file is generated if required by the design, for
example:

• When code is generated for a multirate model.

• When a cascade block implementation for certain blocks is specified.

The timing controller name derives from the name of the
subsystem that is selected for code generation (the DUT) as
DUTname+TimingControllerPostfix. For example, if the name of your
DUT is my_test, in the default case the coder adds the postfix _tc to
form the timing controller name my_test_tc.

See Also OptimizeTimingController, Chapter 6, “Generating HDL Code for
Multirate Models”
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TestBenchReferencePostFix

Purpose Specify string appended to names of reference signals generated in
test bench code

Settings 'string'

Default: '_ref'.

Reference signal data is represented as arrays in the generated test
bench code. The string specified by TestBenchReferencePostFix is
appended to the generated signal names.
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Traceability

Purpose Enable or disable creation of HTML code generation report with
code-to-model and model-to-code hyperlinks

Settings 'on'

Create and display an HTML code generation report.

'off' (default)

Do not create an HTML code generation report.

Usage
Notes

You can use the RequirementComments property to generate
hyperlinked requirements comments within the HTML code generation
report. The requirements comments link to the corresponding
requirements documents for your model.

See Also “Creating and Using Code Generation Reports” on page 10-2,
“Annotating Generated Code with Comments and Requirements” on
page 10-27 , RequirementComments
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UseAggregatesForConst

Purpose Specify whether all constants are represented by aggregates, including
constants that are less than 32 bits

Settings 'on'

Specify that all constants, including constants that are less than 32 bits,
be represented by aggregates. The following VHDL code show a scalar
less than 32 bits represented as an aggregate:

GainFactor_gainparam <= (14 => '1', OTHERS => '0');

'off' (default)

Specify that the coder represent constants less than 32 bits as scalars
and constants greater than or equal to 32 bits as aggregates. The
following VHDL code was generated by default for a value less than
32 bits:

GainFactor_gainparam <= to_signed(16384, 16);

See Also LoopUnrolling, SafeZeroConcat, UseRisingEdge
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UserComment

Purpose Specify comment line in header of generated HDL and test bench files

Settings 'string'

The comment is generated in each of the generated code and test
bench files. The code generator adds leading comment characters as
appropriate for the target language. When newlines or line feeds are
included in the string, the code generator emits single-line comments
for each newline.

For example, the following makehdl command adds two comment lines
to the header in a generated VHDL file.

makehdl(gcb,'UserComment','This is a comment line.\nThis is a second line.')

The resulting header comment block for subsystem symmetric_fir
would appear as follows:

-- -------------------------------------------------------------

--

-- Module: symmetric_fir

-- Simulink Path: sfir_fixed/symmetric_fir

-- Created: 2006-11-20 15:55:25

-- Hierarchy Level: 0

--

-- This is a comment line.

-- This is a second line.

--

-- Simulink model description for sfir_fixed:

-- This model shows how to use Simulink HDL Coder to check, generate,

-- and verify HDL for a fixed-point symmetric FIR filter.

--

-- -------------------------------------------------------------
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UseRisingEdge

Purpose Specify VHDL coding style used to check for rising edges when
operating on registers

Settings 'on'

Use the VHDL rising_edge function to check for rising edges when
operating on registers. The following code, generated from a Unit Delay
block, tests rising_edge as shown in the following PROCESS block:

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF rising_edge(clk) THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

END PROCESS Unit_Delay1_process;

'off' (default)

Check for clock events when operating on registers. The following code,
generated from a Unit Delay block, checks for a clock event as shown in
the ELSIF statement of the following PROCESS block:

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;
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END PROCESS Unit_Delay1_process;

Usage
Notes

The two coding styles have different simulation behavior when the clock
transitions from 'X' to '1'.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst
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UseVerilogTimescale

Purpose Use compiler `timescale directives in generated Verilog code

Settings 'on' (default)

Use compiler `timescale directives in generated Verilog code.

'off'

Suppress the use of compiler `timescale directives in generated
Verilog code.

Usage
Notes

The `timescale directive provides a way of specifying different delay
values for multiple modules in a Verilog file. This setting does not affect
the generated test bench.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge
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VectorPrefix

Purpose Specify string prefixed to vector names in generated code

Settings 'string'

Default: 'vector_of_'

Specify a string to be prefixed to vector names in generated code.
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Verbosity

Purpose Specify level of detail for messages displayed during code generation

Settings n

Default: 0 (minimal messages displayed).

When Verbosity is set to 0, minimal code generation progress messages
are displayed as code generation proceeds. When Verbosity is set to 1,
more detailed progress messages are displayed.
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VerilogFileExtension

Purpose Specify file type extension for generated Verilog files

Settings 'string'

The default file type extension for generated Verilog files is .v.

See Also TargetLanguage
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VHDLArchitectureName

Purpose Specify architecture name for generated HDL code

Settings 'string'

The default architecture name is 'rtl'.
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VHDLFileExtension

Purpose Specify file type extension for generated VHDL files

Settings 'string'

The default file type extension for generated VHDL files is .vhd.

See Also TargetLanguage
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VHDLLibraryName

Purpose Specify name of target library for generated HDL code

Settings 'string'

The default target library name is 'work'.

See Also HDLCompileInit
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19

Property Reference

Language Selection Properties
(p. 19-2)

Properties for selecting language of
generated HDL code

File Naming and Location Properties
(p. 19-2)

Properties that name and specify
location of generated files

Reset Properties (p. 19-2) Properties that specify reset signals
in generated code

Header Comment and General
Naming Properties (p. 19-3)

Properties affecting generation
of header comments and process,
module, component instance, and
other name strings

Script Generation Properties
(p. 19-4)

Properties affecting generation
of script files for simulation and
synthesis tools

Port Properties (p. 19-5) Properties that specify port
characteristics in generated code

Advanced Coding Properties (p. 19-6) Advanced HDL coding properties

Test Bench Properties (p. 19-8) Properties that specify generated
test bench code

Generated Model Properties
(p. 19-10)

Properties for controlling naming
and appearance of generated models



19 Property Reference

Language Selection Properties
TargetLanguage Specify HDL language to use for

generated code

File Naming and Location Properties
HDLMapPostfix Specify postfix string appended to

file name for generated mapping file

TargetDirectory Identify folder into which the coder
writes generated output files.

VerilogFileExtension Specify file type extension for
generated Verilog files

VHDLFileExtension Specify file type extension for
generated VHDL files

Reset Properties
Oversampling Specify frequency of global

oversampling clock as a multiple of
the model’s base rate

ResetAssertedLevel Specify asserted (active) level of
reset input signal

ResetLength Define length of time (in clock cycles)
during which reset is asserted

ResetType Specify whether to use asynchronous
or synchronous reset logic when
generating HDL code for registers

ResetValue Specify constant value to which test
bench forces reset input signals
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Header Comment and General Naming Properties

Header Comment and General Naming Properties
ClockProcessPostfix Specify string to append to HDL

clock process names

ComplexImagPostfix Specify string to append to imaginary
part of complex signal names

ComplexRealPostfix Specify string to append to real part
of complex signal names

EntityConflictPostfix Specify string to append to duplicate
VHDL entity or Verilog module
names

InstancePostfix Specify string appended to generated
component instance names

InstancePrefix Specify string prefixed to generated
component instance names

PackagePostfix Specify string to append to specified
model or subsystem name to form
name of package file

ReservedWordPostfix Specify string appended to identifiers
for entities, signals, constants, or
other model elements that conflict
with VHDL or Verilog reserved
words

SplitArchFilePostfix Specify string to append to specified
name to form name of file containing
model’s VHDL architecture

SplitEntityArch Specify whether generated VHDL
entity and architecture code is
written to single VHDL file or to
separate files

SplitEntityFilePostfix Specify string to append to specified
model name to form name of
generated VHDL entity file
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TimingControllerPostfix Specify suffix appended to DUT
name to form timing controller name

VectorPrefix Specify string prefixed to vector
names in generated code

VHDLArchitectureName Specify architecture name for
generated HDL code

VHDLLibraryName Specify name of target library for
generated HDL code

Script Generation Properties
EDAScriptGeneration Enable or disable generation of

script files for third-party tools

HDLCompileFilePostfix Specify postfix string appended
to file name for generated Mentor
Graphics ModelSim compilation
scripts

HDLCompileInit Specify string written to
initialization section of compilation
script

HDLCompileTerm Specify string written to termination
section of compilation script

HDLCompileVerilogCmd Specify command string written to
compilation script for Verilog files

HDLCompileVHDLCmd Specify command string written to
compilation script for VHDL files

HDLSimCmd Specify simulation command written
to simulation script

HDLSimFilePostfix Specify postfix string appended
to file name for generated Mentor
Graphics ModelSim simulation
scripts
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Port Properties

HDLSimInit Specify string written to
initialization section of simulation
script

HDLSimTerm Specify string written to termination
section of simulation script

HDLSimViewWaveCmd Specify waveform viewing command
written to simulation script

HDLSynthCmd Specify command written to
synthesis script

HDLSynthFilePostfix Specify postfix string appended to
file name for generated synthesis
scripts

HDLSynthInit Specify string written to
initialization section of synthesis
script

HDLSynthTerm Specify string written to termination
section of synthesis script

SynthToolOption Select synthesis tool for which the
coder generates scripts.

Port Properties
ClockEnableInputPort Name HDL port for model’s clock

enable input signals

ClockEnableOutputPort Specify name of clock enable output
port

ClockInputPort Name HDL port for model’s clock
input signals

ClockInputs Specify generation of single or
multiple clock inputs

19-5



19 Property Reference

EnablePrefix Specify base name string for internal
clock enables in generated code

InputType Specify HDL data type for model’s
input ports

OutputType Specify HDL data type for model’s
output ports

ResetInputPort Name HDL port for model’s reset
input

ScalarizePorts Flatten vector ports into structure of
scalar ports in VHDL code

Advanced Coding Properties
BalanceDelays Enable delay balancing

BlockGenerateLabel Specify string to append to block
labels used for HDL GENERATE
statements

CastBeforeSum Enable or disable type casting
of input values for addition and
subtraction operations before
execution of operation

CheckHDL Check model or subsystem for HDL
code generation compatibility

DateComment Specify whether or not to include
time/date information in the
generated HDL file header

GenerateValidationModel Generate validation model with
HDL code

HandleAtomicSubsystem Enable reusable code generation for
identical atomic subsystems
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Advanced Coding Properties

HDLControlFiles Attach code generation control file
to model

InlineConfigurations Specify whether generated VHDL
code includes inline configurations

InstanceGenerateLabel Specify string to append to instance
section labels in VHDL GENERATE
statements

LoopUnrolling Specify whether VHDL FOR and
GENERATE loops are unrolled and
omitted from generated VHDL code

MinimizeClockEnables Omit generation of clock enable logic
for single-rate designs.

MinimizeIntermediateSignals Specify whether to optimize HDL
code for debuggability or code
coverage

MulticyclePathInfo Generate text file that reports
multicycle path constraint
information, for use with synthesis
tools.

OptimizationReport Display HTML optimization report

OptimizeTimingController Optimize timing controller entity for
speed and code size by implementing
separate counters per rate

OutputGenerateLabel Specify string that labels output
assignment block for VHDL
GENERATE statements

PipelinePostfix Specify string to append to names
of input or output pipeline registers
generated for pipelined block
implementations

RequirementComments Enable or disable generation of
hyperlinked requirements comments
in HTML code generation reports
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ResourceReport Display HTML resource utilization
report

SafeZeroConcat Specify syntax for concatenated
zeros in generated VHDL code

Traceability Enable or disable creation of
HTML code generation report with
code-to-model and model-to-code
hyperlinks

UseAggregatesForConst Specify whether all constants are
represented by aggregates, including
constants that are less than 32 bits

UserComment Specify comment line in header of
generated HDL and test bench files

UseRisingEdge Specify VHDL coding style used
to check for rising edges when
operating on registers

UseVerilogTimescale Use compiler `timescale directives
in generated Verilog code

Verbosity Specify level of detail for messages
displayed during code generation

Test Bench Properties
ClockHighTime Specify period, in nanoseconds,

during which test bench drives clock
input signals high (1)

ClockLowTime Specify period, in nanoseconds,
during which test bench drives clock
input signals low (0)

ForceClock Specify whether test bench forces
clock input signals
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Test Bench Properties

ForceClockEnable Specify whether test bench forces
clock enable input signals

ForceReset Specify whether test bench forces
reset input signals

GenerateCoSimBlock Generate model containing HDL
Cosimulation block(s) for use in
testing DUT

GenerateCoSimModel Generate model containing HDL
Cosimulation block for use in testing
DUT

HoldInputDataBetweenSamples Specify how long subrate signal
values are held in valid state

HoldTime Specify hold time for input signals
and forced reset input signals

IgnoreDataChecking Specify number of samples during
which output data checking is
suppressed

InitializeTestBenchInputs Specify initial value driven on test
bench inputs before data is asserted
to DUT

MultifileTestBench Divide generated test bench into
helper functions, data, and HDL test
bench code files

SimulatorFlags Specify simulator flags to apply to
generated compilation scripts

TestBenchClockEnableDelay Define elapsed time (in clock cycles)
between deassertion of reset and
assertion of clock enable

TestBenchDataPostFix Specify suffix added to test bench
data file name when generating
multi-file test bench
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TestBenchPostFix Specify suffix to test bench name

TestBenchReferencePostFix Specify string appended to names of
reference signals generated in test
bench code

Generated Model Properties
CodeGenerationOutput Control production of generated code

and display of generated model

Generatedmodelname Specify name of generated model

Generatedmodelnameprefix Specify prefix to name of generated
model

Highlightancestors Highlight ancestors of blocks in
generated model that differ from
original model

Highlightcolor Specify color for highlighted blocks
in generated model
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checkhdl

Purpose Check subsystem or model for HDL code generation compatibility

Syntax checkhdl(bdroot)
checkhdl(modelname)
checkhdl(modelname/subsys)
checkhdl(gcb)
output = checkhdl(system)

Description checkhdl(bdroot) examines the current model for HDL code
generation compatibility and generates a compatibility report.

checkhdl generates an HTML HDL Code Generation Check Report,
writes the report to the target folder, and displays the report in a
browser window.

The report is in table format. Each entry in the table includes a
hyperlink to a block or subsystem that caused a problem. When you
click the hyperlink, the block of interest highlights and displays (if the
model referenced by the report is open). If checkhdl finds no errors, the
report contains only a hyperlink to the subsystem or model selected
for code generation.

The report file naming convention is system_report.html, where
system is the name of the subsystem or model passed in to checkhdl.

When a model or subsystem passes checkhdl without errors, that
does not imply successful completion of code generation in all cases.
checkhdl does not verify all block parameters.

checkhdl(modelname) examines the model explicitly specified by
modelname for HDL code generation compatibility and generates a
compatibility report.

checkhdl(modelname/subsys) examines a specified subsystem within
the model specified by modelname for HDL code generation compatibility
and generates a compatibility report. subsys specifies the name of
the subsystem to check. subsys must be at the top (root) level of the
current model. It cannot be a subsystem nested at a lower level of the
model hierarchy.
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checkhdl(gcb) examines the currently selected subsystem within the
current model for HDL code generation compatibility and generates a
compatibility report.

output = checkhdl(system)

where system specifies a model or subsystem in any of the forms
described previously.

When the command includes an output argument, checkhdl does not
generate a report. Instead, it returns a 1xN struct array with one entry
for each error, warning, or message.

Use checkhdl to check your subsystems or models before generating
HDL code. checkhdl reports three levels of compatibility problems:

• Errors: Errors cause the code generation process to terminate. Fix
all reported errors before generating HDL code again. A typical error
would be the use of an unsupported data type.

• Warnings: Warnings indicate problems in the generated code, but
generally allow HDL code generation to continue. For example, the
presence of an unsupported block in the model would raise a warning.
In this case, the code generator attempts to proceed as if the block
were not present in the design. This strategy could lead to errors
later in the code generation process, which would then terminate.

• Messages: Messages are indications that the HDL code generator
treats some data types in a way that differs from thie usual
treatment. For example, the coder automatically single-precision
floating-point data types to double-precision because VHDL and
Verilog do not support single-precision data types.

Examples Check the subsystem symmetric_fir within the model sfir_fixed for
HDL code generation compatibility and generate a compatibility report.

checkhdl('sfir_fixed/symmetric_fir')
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Check the subsystem symmetric_fir_err within the model
sfir_fixed_err for HDL code generation compatibility, and return
information on problems encountered in the struct output.

output = checkhdl('sfir_fixed_err/symmetric_fir_err')

### Starting HDL Check.

...

### HDL Check Complete with 4 errors, warnings and messages.

The following MATLAB commands display the top-level structure of the
struct output, and its first cell.

output =

1x4 struct array with fields:

path

type

message

level

output(1)

ans =

path: 'sfir_fixed_err/symmetric_fir_err/Product'

type: 'block'

message: 'Unhandled mixed double and non-double datatypes at ports of block'

level: 'Error'

See Also makehdl

Tutorials • “Selecting and Checking a Subsystem for HDL Compatibility” on
page 2-23
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Purpose Display HDL Workflow Advisor

Syntax hdladvisor(gcb)
hdladvisor(subsystem)
hdladvisor(model,'SystemSelector')

Description hdladvisor(gcb) starts the HDL Workflow Advisor, passing the
currently selected subsystem within the current model as the DUT
to be checked.

hdladvisor(subsystem) starts the HDL Workflow Advisor, passing in
the path to a specified subsystem within the model.

hdladvisor(model,'SystemSelector') opens a System Selector
window that lets you select a subsystem to be opened into the HDL
Workflow Advisor as the device under test (DUT) to be checked.

Examples Open the subsystem symmetric_fir within the model sfir_fixed into
the HDL Workflow Advisor.

hdladvisor('sfir_fixed/symmetric_fir')

Open a System Selector window to select a subsystem within the
current model. Then open the selected subsystem into the HDL
Workflow Advisor.

hdladvisor(gcs,'SystemSelector')

Alternatives You can also open the HDL Workflow Advisor from the your model
window by selecting→ToolsHDL Coder > HDL Workflow Advisor.

How To • Chapter 15, “Using the HDL Workflow Advisor”
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Purpose Apply control file settings to model

Syntax hdlapplycontrolfile(modelname, controlfilename)
hdlapplycontrolfile(dutname, controlfilename)

Description hdlapplycontrolfile(modelname, controlfilename) applies the
settings in the specified control file to the specified model.

hdlapplycontrolfile(dutname, controlfilename) applies the
settings in the specified control file to a specified subsystem (the device
under test, or DUT) within the current model.

Tips • As of release R2010b, use of control files is no longer recommended,
and the coder does not support the attachment of a control file to
a new model. Instead, the coder now saves all non-default block
implementation and implementation parameter settings to the model
itself. This eliminates the need to load and save a separate control
file. The coder provides the hdlapplycontrolfile utility as a
quick way to transfer HDL settings from existing models that have
attached control files to other models.

• After you apply control file settings to a model, be sure to save the
model.

• If you have existing models with attached control files, you should
convert them to the current format. To do this, simply open the
model and save it. Saving a model clears its attachment to its control
file, but the control file itself is preserved so that you can apply it to
other models if you wish.

For backward compatibility, the coder continues to support models
that have attached control files. See Chapter 17, “Code Generation
Control Files” for further information.

• Some control files are designed to be generic, and do not specify
the DUT using generateHDLFor. To apply settings from such a
control file, you must supply a full path to the desired DUT using the
dutname argument.
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Input
Arguments

modelname

Name of the target model, to which control file settings are
applied.

Default: None

controlfilename

Name of the control file containing hdl settings to be applied

Default: None

dutname

Full path to the top-level subsystem (the device under test or
DUT) within the target model.

Default: None

Examples Apply settings from sfir_fixed_control.m to the open model
sfir_fixed_newVersion.

hdlapplycontrolfile('sfir_fixed_newVersion','sfir_fixed_control.m')

Successfully loaded control file 'sfir_fixed_control.m' ...

Apply settings from sfir_fixed_control.m to the subsystem
symmetric_fir within the open modelsfir_fixed_newVersion.

hdlapplycontrolfile('sfir_fixed_newVersion/symmetric_fir','sfir_fixed_control.m')

Successfully loaded control file 'sfir_fixed_control.m' ...

See Also | Chapter 17, “Code Generation Control Files”
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Purpose Display HDL block parameters that have nondefault values

Syntax hdldispblkparams(path)
hdldispblkparams(path,'all')

Description hdldispblkparams(path) displays, for the specified block, the names
and values of HDL parameters that have nondefault values.

hdldispblkparams(path,'all') displays, for the specified block, the
names and values of all HDL block parameters.

Input
Arguments

path

Path to a block or subsystem in the current model.

Default: None

'all'

If you pass in the string 'all', hdldispblkparams displays the
names and values of all HDL properties of the specified block.

Examples The following example displays nondefault HDL block parameter
settings for a Sum of Elements block).

hdldispblkparams('simplevectorsum/vsum/Sum of Elements')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of Elements')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

Architecture : Linear

Implementation Parameters

InputPipeline : 1
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The following example displays all HDL block parameters and values
for the currently selected block, (a Sum of Elements block).

hdldispblkparams(gcb,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Implementation

Architecture : Linear

Implementation Parameters

InputPipeline : 0

OutputPipeline : 0

See Also “Obtaining HDL-Related Block and Model Parameter Information”
on page 4-22
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Purpose Display HDL model parameters that have nondefault values

Syntax hdldispmdlparams(model)
hdldispmdlparams(model,'all')

Description hdldispmdlparams(model) displays, for the specified model, the names
and values of HDL parameters that have nondefault values.

hdldispmdlparams(model,'all') displays the names and values of all
HDL parameters for the specified model.

Input
Arguments

model

Name of an open model.

Default: None

'all'

If you pass in the string'all' , hdldispmdlparams displays the
names and values of all HDL properties of the specified model.

Examples The following example displays HDL properties of the current model
that have nondefault values.

hdldispmdlparams(bdroot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters (non-default)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CodeGenerationOutput : 'GenerateHDLCodeAndDisplayGeneratedModel'

HDLSubsystem : 'simplevectorsum_2atomics/Subsystem'

OptimizationReport : 'on'

ResetInputPort : 'rst'

ResetType : 'Synchronous'
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The following example displays all HDL properties and values of the
current model.

hdldispmdlparams(bdroot,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%

AddPipelineRegisters : 'off'

Backannotation : 'on'

BlockGenerateLabel : '_gen'

CheckHDL : 'off'

ClockEnableInputPort : 'clk_enable'

.

.

.

VerilogFileExtension : '.v'

See Also “Obtaining HDL-Related Block and Model Parameter Information”
on page 4-22
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Purpose Return value of specified HDL block-level parameter (or of all
parameters) for specified block

Syntax p = hdlget_param(block_path,prop)

Description p = hdlget_param(block_path,prop) gets the value of a specified
HDL property (or of all HDL properties) of a block or subsystem, and
returns the value to the output variable.

Tips • Use hdlget_param only to obtain the value of HDL block parameters
(see “Summary of Block Implementations” on page 5-3 for a complete
listing of all block implementations and their parameters). To obtain
the value of general model parameters, use the set_param function.

Input
Arguments

block_path

Path to a block or subsystem in the current model.

Default: None

prop

A string designating one of the following:

• The name of an HDL block property of the block or subsystem
specified by block_path.

• 'all' : If prop is set to 'all', hdlget_param returns
Name,Value pairs for all HDL properties of the specified block.

Default: None

Output
Arguments

p

p receives the value of the HDL block property specified by prop.
The data type and dimensions of p depend on the data type and
dimensions of the value returned. If prop is set to 'all', p is a
cell array.
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Examples In the following example hdlget_param returns the value of the HDL
block parameter OutputPipeline to the variable p.

p = hdlget_param(gcb,'OutputPipeline')

p =

3

In the following example hdlget_param returns all HDL block
parameters and values for the current block to the cell array p.

p = hdlget_param(gcb,'all')

p =

'Architecture' 'Linear' 'InputPipeline' [0] 'OutputPipeline' [0]

See Also “Obtaining HDL-Related Block and Model Parameter Information”
on page 4-22
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Purpose Create library of blocks that support HDL code generation

Syntax hdllib

Description hdllib creates a library of blocks that are compatible with HDL code
generation. The library affords quick access to all supported blocks.
By constructing models using blocks from this library, you can ensure
block-level compatibility of your model with the coder.

The default name for the library is hdlsupported.mdl. After you
generate the library, save it to a folder of your choice.

hdllib loads many block libraries during the creation of the
hdlsupported library. (Loading libraries causes a license checkout.)
When hdllib completes generation of the library, it does not unload
block libraries.

Parameter settings for some blocks in the hdlsupported library differ
from corresponding blocks in other libraries.

The set of supported blocks will change in future releases of the coder.
To keep the hdlsupported.mdl current, rebuild the library each time
you install a new release.

Examples Build a library of HDL-compatible blocks.

hdllib

The following figure shows the top-level view of the hdlsupported.mdl
library.
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See Also “Supported Blocks Library” on page 10-35
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Purpose Generate customizable control file from selected subsystem or blocks

Syntax hdlnewblackbox
hdlnewblackbox('blockpath')
hdlnewblackbox({'blockpath1','blockpath2',...'blockpathN'})
[cmd, impl] = hdlnewblackbox
[cmd, impl] = hdlnewblackbox('blockpath')
[cmd, impl] = hdlnewblackbox({'blockpath1','blockpath2',

...'blockpathN'})
[cmd, impl, params] = hdlnewblackbox
[cmd, impl, params] = hdlnewblackbox('blockpath')
[cmd, impl, params] = hdlnewblackbox({'blockpath1',

'blockpath2',...'blockpathN'})

Description The hdlnewblackbox utility helps you construct forEach calls for
use in code generation control files when generating black box
interfaces. Given a selection of one or more blocks from your model,
hdlnewblackbox returns the following as string data in the MATLAB
workspace for each selected block:

• A forEach call coded with the correct modelscope,
blocktype, and default implementation class
(SubsystemBlackBoxHDLInstantiation) arguments for the block.

• (Optional) a cell array of strings enumerating the available
implementations classes for the subsystem.

• (Optional) A cell array of cell arrays of strings enumerating the
names of implementation parameters (if any) corresponding to the
implementation classes. hdlnewblackbox does not list data types
and other details of implementation parameters.

hdlnewblackbox returns a forEach call for each selected block in the
model.

hdlnewblackbox('blockpath') returns a forEach call for the block
specified by the 'blockpath' argument. The 'blockpath' argument is
a string specifying the full Simulink path to the desired block.
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hdlnewblackbox({'blockpath1','blockpath2',...'blockpathN'})
returns a forEach call for the blocks specified by the
{'blockpath1','blockpath2',...'blockpathN'} arguments. The
{'blockpath1','blockpath2',...'blockpathN'} arguments are
passed as a cell array of strings, each string specifying the full Simulink
path to a desired block.

[cmd, impl] = hdlnewblackbox returns a forEach call for each
selected block in the model to the string variable cmd. The call also
returns impl, a cell array of cell arrays of strings enumerating the
available implementations for the block.

[cmd, impl] = hdlnewblackbox('blockpath') returns a forEach
call for the block specified by the 'blockpath' argument to the string
variable cmd. The call also returns impl, a cell array of cell arrays of
strings enumerating the available implementations for the block. The
'blockpath' argument is a string specifying the full Simulink path
to the desired block.

[cmd, impl] =
hdlnewblackbox({'blockpath1','blockpath2',...'blockpathN'})
returns a forEach call for the blocks specified by the
{'blockpath1','blockpath2',...'blockpathN'} arguments to the
string variable cmd. The call also returns impl, a cell array of cell
arrays of strings enumerating the available implementations for the
block. The {'blockpath1','blockpath2',...'blockpathN'}
arguments are passed as a cell array of strings, each string specifying
the full Simulink path to a desired block.

[cmd, impl, params] = hdlnewblackbox returns a forEach call for
each selected block in the model to the string variable cmd. The call
also returns:

• impl, a cell array of cell arrays of strings enumerating the available
implementations for the block.

• params, a cell array of cell arrays of strings enumerating the available
implementation parameters corresponding to each implementation.
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[cmd, impl, params] = hdlnewblackbox('blockpath') returns a
forEach call for the block specified by the 'blockpath' argument to
the string variable cmd. The call also returns:

• impl, a cell array of cell arrays of strings enumerating the available
implementations for the block.

• params, a cell array of cell arrays of strings enumerating the available
implementation parameters corresponding to each implementation.

The 'blockpath' argument is a string specifying the full Simulink
path to the desired block.

[cmd, impl, params] =
hdlnewblackbox({'blockpath1','blockpath2',...'blockpathN'})
returns a forEach call for the blocks specified by the
{'blockpath1','blockpath2',...'blockpathN'} arguments to the
string variable cmd. The call also returns:

• impl, a cell array of cell arrays of strings enumerating the available
implementations for the block.

• params, a cell array of cell arrays of strings enumerating the available
implementation parameters corresponding to each implementation.

The {'blockpath1','blockpath2',...'blockpathN'} arguments are
passed as a cell array of strings, each string specifying the full Simulink
path to a desired block.

Tips After invoking hdlnewblackbox, you will generally want to insert the
forEach calls returned by the function into a control file, and use the
implementation information returned to specify a nondefault block
implementation.

Examples % Return a forEach call for a specific subsystem to the MATLAB workspace

hdlnewblackbox('sfir_fixed/symmetric_fir');

%

% Return forEach calls for all currently selected blocks to the MATLAB workspace
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hdlnewblackbox;

%

% Return forEach calls, implementation names, and implementation parameter names

% for all currently selected blocks to string variables

[cmd,impl,parms] = hdlnewblackbox;
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Purpose Construct code generation control object for use in control file

Syntax object = hdlnewcontrol(mfilename)

Description object = hdlnewcontrol(mfilename) constructs and returns a control
generation control object (object) that is linked to a code generation
control file.

The argument to hdlnewcontrol is the name of the control file itself.
Use the mfilename function to pass in the file name string.

Tip The hdlnewcontrol function constructs an instance of the class
hdlnewcontrol is a wrapper function provided to let you instantiate
such objects. You should not directly call the constructor of the class.

In your control files, use only the public methods of the class
slhdlcoder.ConfigurationContainer. All public methods are
described in this document. in your control files. All other methods of
this class are for MathWorks internal development use only.

See also • Chapter 17, “Code Generation Control Files”
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Purpose Generate customizable control file from selected subsystem or blocks

Syntax hdlnewcontrolfile
hdlnewcontrolfile('blockpath')
hdlnewcontrolfile({'blockpath1','blockpath2',

...'blockpathN'})
t = hdlnewcontrolfile(...)

Description The coder provides the hdlnewcontrolfile utility to help you
construct code generation control files. Given a selection of one or more
blocks from your model, hdlnewcontrolfile generates a control file
containing:

• A c.generateHDLFor call specifying the full path to the currently
selected block or subsystem from which code is to be generated.

• c.forEach calls for all selected blocks that have HDL
implementations.

• Comments providing information about all supported
implementations and parameters for all selected blocks that have
HDL implementations.

• c.set calls for any global HDL Coder options that are set to
nondefault values.

Generated control files are automatically opened as untitled files
in the MATLAB editor for further customization. The file naming
sequence for successively generated control files is Untitled1,
Untitled2,...UntitledN.

hdlnewcontrolfile returns a control file containing a forEach
statement and comments for each selected block in the model.

hdlnewcontrolfile('blockpath') returns a control file containing
a forEach statement and comments for the block specified by the
'blockpath' argument. The 'blockpath' argument is a string
specifying the full Simulink path to the desired block.
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hdlnewcontrolfile({'blockpath1','blockpath2',...'blockpathN'})
returns a control file containing a forEach statement
and comments for the blocks specified by the
{'blockpath1','blockpath2',...'blockpathN'} arguments. The
{'blockpath1','blockpath2',...'blockpathN'} arguments are
passed as a cell array of strings, each string specifying the
full Simulink path to a desired block.

t = hdlnewcontrolfile(...) returns control statements as text in
the string variable t, instead of returning a control file.

Tips You can use the generated control file as:

• A starting point for development of a customized control file.

• A source of information or documentation of the HDL code generation
parameter settings in the model.

Examples % Generate control file for a specific block

hdlnewcontrolfile('sfir_fixed/symmetric_fir/Product1');

%

% Generate a control file for all currently selected blocks

hdlnewcontrolfile;

%

% Generate a control file for two specific blocks

hdlnewcontrolfile({'sfir_fixed/symmetric_fir/Add1',...

'sfir_fixed/symmetric_fir/Product2'});
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Purpose Generate forEach calls for insertion into code generation control files

Syntax hdlnewforeach
hdlnewforeach('blockpath')
hdlnewforeach({'blockpath1','blockpath2',...})
[cmd, impl] = hdlnewforeach
[cmd, impl] = hdlnewforeach('blockpath')
[cmd, impl] = hdlnewforeach({'blockpath1','blockpath2',...})
[cmd, impl, parms] = hdlnewforeach
[cmd, impl, parms] = hdlnewforeach('blockpath')
[cmd, impl, parms] = hdlnewforeach({'blockpath1','blockpath2',

...})

Description The coder provides the hdlnewforeach utility to help you construct
forEach calls for use in code generation control files. Given a selection
of one or more blocks from your model, hdlnewforeach returns the
following for each selected block, as string data in the MATLAB
workspace:

• A forEach call coded with the correct modelscope, blocktype, and
default implementation arguments for the block.

• (Optional) A cell array of cell arrays of strings enumerating the
available implementations for the block.

• (Optional) A cell array of cell arrays of strings enumerating the names
of implementation parameters (if any) corresponding to the block
implementations. See “Block Implementation Parameters” on page
5-60 for that data types and other details of block implementation
parameters.

hdlnewforeach returns a forEach call for each selected block in the
model. Each call is returned as a string.

hdlnewforeach('blockpath') returns a forEach call for a specified
block in the model. The call is returned as a string.

The 'blockpath' argument is a string specifying the full path to the
desired block.
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hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model. Each call is returned
as a string.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full path to a desired block.

[cmd, impl] = hdlnewforeach returns a forEach call for each
selected block in the model to the string variable cmd. In addition, the
call returns a cell array of cell arrays of strings (impl) enumerating the
available implementations for the block.

[cmd, impl] = hdlnewforeach('blockpath') returns a forEach call
for a specified block in the model to the string variable cmd. In addition,
the call returns a cell array of cell arrays of strings (impl) enumerating
the available implementations for the block.

The 'blockpath' argument is a string specifying the full path to the
desired block.

[cmd, impl] =
hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model to the string variable
cmd. In addition, the call returns a cell array of cell arrays of strings
(impl) enumerating the available implementations for the block.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full path to a desired block.

[cmd, impl, parms] = hdlnewforeach returns a forEach call for
each selected block in the model to the string variable cmd. In addition,
the call returns:

• A cell array of cell arrays of strings (impl) enumerating the available
implementations for the block.

• A cell array of cell arrays of strings (parms) enumerating the available
implementation parameters corresponding to each implementation.
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[cmd, impl, parms] = hdlnewforeach('blockpath') returns a
forEach call for a specified block in the model to the string variable
cmd. In addition, the call returns:

• A cell array of cell arrays of strings (impl) enumerating the available
implementations for the block.

• A cell array of cell arrays of strings (parms) enumerating the available
implementation parameters corresponding to each implementation.

The 'blockpath' argument is a string specifying the full path to the
desired block.

[cmd, impl, parms] =
hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model to the string variable
cmd. In addition, the call returns:

• A cell array of cell arrays of strings (impl) enumerating the available
implementations for the block.

• A cell array of cell arrays of strings (parms) enumerating the available
implementation parameters corresponding to each implementation.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full path to a desired block.

Tips hdlnewforeach returns an empty string for blocks that do not have an
HDL implementation. hdlnewforeach also returns an empty string for
subsystems, which are a special case. Subsystems do not have a default
implementation class, but special-purpose subsystems implementations
are provided (see Chapter 11, “Interfacing Subsystems and Models to
HDL Code”).

After invoking hdlnewforeach, you will generally want to insert the
forEach calls returned by the function into a control file, and use
the implementation and parameter information returned to specify a
nondefault block implementation. See “Generating Selection/Action
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Statements with the hdlnewforeach Function” on page 17-19 for a
worked example.

Examples The following example generates forEach commands for two explicitly
specified blocks.

hdlnewforeach({'sfir_fixed/symmetric_fir/Add4',...

'sfir_fixed/symmetric_fir/Product2'})

ans =

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...

'default', {}); % Default architecture is 'Linear'

c.forEach('./symmetric_fir/Product2',...

'built-in/Product', {},...

'default', {}); % Default architecture is 'Linear'

The following example generates a forEach command for an explicitly
specified Sum block. The implementation and parameters information
returned is listed after the forEach command.

c.forEach('./symmetric_fir/Add4',...

'built-in/Sum', {},...

'default', {}); % Default architecture is 'Linear'

impl =

{3x1 cell}

parms =

{1x2 cell} {1x2 cell} {1x2 cell} >> parms{1:4}
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>> impl{1}

ans =

'Linear'

'Cascade'

'Tree'ans =

>> parms{1:3}

ans =

'InputPipeline' 'OutputPipeline'

ans =

'InputPipeline' 'OutputPipeline'

ans =

'InputPipeline' 'OutputPipeline'
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Purpose Set HDL-related parameters at model or block level

Syntax hdlset_param(path,Name,Value)

Description hdlset_param(path,Name,Value) sets HDL-related parameters in the
block or model referenced by path. The parameters to be set, and their
values, are specified by one or more Name,Value pair arguments. You
can specify several name and value pair arguments in any order as
Name1,Value1, ,NameN,ValueN.

Tips • When you set multiple parameters on the same model or block, use a
single hdl_set_param command with multiple pairs of arguments,
rather than multiple hdl_set_param commands. This technique
is more efficient because using a single call requires evaluating
parameters only once.

• To set HDL block parameters for multiple blocks, use the
find_system function to locate the blocks of interest. Then, use a
loop to iterate over all the blocks and call hdlset_param to set the
desired parameters.

Input
Arguments

path

Path to the model or block for which hdlset_param is to set one or
more parameter values.

Default: None

Name-Value Pair Arguments

Optional comma-separated pairs of Name,Value arguments, where Name
is the argument name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value
pair arguments in any order as Name1,Value1, ,NameN,ValueN.

Name

Name is a string specifying the name of one of the following:
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• A model-level HDL-related property. See Chapter 18,
“Properties — Alphabetical List” for a complete listing and
definitions of all such properties, their data types and their
default values.

• An HDL block property, such as an implementation name
or an implementation parameter. See “Summary of Block
Implementations” on page 5-3 for a complete listing of all block
implementations and their parameters.

Default: None

Value

Value is a value to be applied to the corresponding property in a
Name,Value argument.

Default: Default value is dependent on the property.

Examples The following example uses the sfir_fixed model to demonstrate
how to locate a group of blocks in a subsystem and specify the output
pipeline depth uniformly for all the blocks.

open sfir_fixed;

prodblocks = find_system('sfir_fixed/symmetric_fir', 'BlockType', 'Product');

for ii=1:length(prodblocks), hdlset_param(prodblocks{ii}, 'OutputPipeline', 2), end;

How To • “Selecting Block Implementations with hdlset_param” on page 4-16

• “Selecting Implementations and Setting Implementation Parameters
for Multiple Blocks” on page 4-20
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Purpose Set general model parameters for HDL code generation

Syntax hdlsetup
hdlsetup('model')

Description hdlsetup changes the parameters of the current model (bdroot) to
values that are commonly used for HDL code generation.

hdlsetup('model') changes the parameters of the model specified
by the 'model' argument to values that are commonly used for HDL
code generation.

A model should be open before you invoke the hdlsetup command.

The hdlsetup command uses the set_param function to set up
models for HDL code generation quickly and consistently. The model
parameters settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications.

To view the complete set of model parameters affected by hdlsetup,
view hdlsetup.m in the MATLAB editor.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable
model parameters.

How hdlsetup Configures Solver Options

hdlsetup configures Solver options that are recommended or required
by the coder. These are

• Type: Fixed-step. This is the recommended solver type for most
HDL applications.

The coder currently supports variable-step solvers under the
following limited conditions:

- The device under test (DUT) is single-rate.

- The sample times of all signals driving the DUT are greater than 0.
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• Solver: Discrete (no continuous states). Other fixed-step
solvers could be selected, but this option is usually the correct one
for simulating discrete systems.

• Tasking mode: SingleTasking. The coder does not currently
support models that execute in multitasking mode.

Do not set Tasking mode to Auto.
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Purpose Generate HDL RTL code from model or subsystem

Syntax makehdl(bdroot)
makehdl('modelname')
makehdl('modelname/subsys')
makehdl(gcb)
makehdl(bdroot, 'PropertyName', PropertyValue,...)
makehdl('modelname', 'PropertyName', PropertyValue,...)
makehdl('modelname/subsys','PropertyName',PropertyValue,...)
makehdl(gcb, 'PropertyName', PropertyValue,...)

Description makehdl generates HDL RTL code (VHDL or Verilog) from a model or
subsystem. We will refer to a model or subsystem from which code is
generated as the device under test (DUT).

makehdl(bdroot) generates HDL code from the current model, using
default values for all properties.

makehdl('modelname') generates HDL code from the model explicitly
specified by 'modelname', using default values for all properties.

makehdl('modelname/subsys') generates HDL code from a subsystem
within the model specified by 'modelname', using default values for all
properties.

'subsys' specifies the name of the subsystem. In the current release,
this must be a subsystem at the top (root) level of the current model; it
cannot be a subsystem nested at a lower level of the model hierarchy.

makehdl(gcb) generates HDL code from the currently selected
subsystem within the current model, using default values for all
properties.

makehdl(bdroot, 'PropertyName', PropertyValue,...) generates
HDL code from the current model, explicitly specifying one or more code
generation options as property/value pairs.

makehdl('modelname', 'PropertyName', PropertyValue,...)
generates HDL code from the model explicitly specified by 'modelname',
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explicitly specifying one or more code generation options as
property/value pairs.

makehdl('modelname/subsys','PropertyName',PropertyValue,...)
generates HDL code from a subsystem within the model specified by
'modelname', explicitly specifying one or more code generation options
as property/value pairs.

'subsys' specifies the name of the subsystem. In the current release,
this must be a subsystem at the top (root) level of the current model; it
cannot be a subsystem nested at a lower level of the model hierarchy.

makehdl(gcb, 'PropertyName', PropertyValue,...) generates
HDL code from the currently selected subsystem within the current
model, explicitly specifying one or more code generation options as
property/value pairs.

Property/value pairs are passed in the form

'PropertyName', PropertyValue

These property settings determine characteristics of the generated code,
such as HDL element naming and whether certain optimizations are
applied. The next section, “HDL Code Generation Defaults” on page
20-33, summarizes the default actions of the code generator.

For detailed descriptions of each property and its effect on generated
code, see Chapter 18, “Properties — Alphabetical List”, and Chapter
19, “Property Reference”.

HDL Code Generation Defaults

This section summarizes the default actions of the code generator. Most
defaults can be overridden by passing in appropriate property/value
settings to makehdl. Chapter 18, “Properties — Alphabetical List”
describes all makehdl properties in detail.

Target Language, File Packaging and Naming

• The TargetLanguage property determines whether VHDL or
Verilog code is generated. The default is VHDL.
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• makehdl writes generated files to hdlsrc, a subfolder of the
current working folder. This folder is called the target folder .
makehdl creates a target folder if it does not already exist.

• makehdl generates separate HDL source files for the DUT
and each subsystem within it. In addition, makehdl generates
script files for HDL simulation and synthesis tools. File names
derive from the name of the DUT. File names are assigned by
the coder and are not user-assignable. The following table
summarizes file-naming conventions.

File Name

Verilog
source code

system.v, where system is the
name of the DUT.

VHDL
source code

system.vhd, where system is the
name of the DUT.

Timing
controller
code

system_tc, where system is the
name of the DUT and _tc is the
current value of the property
TimingControllerPostfix.

This file contains a module
defining timing signals (clock,
reset, external clock enable inputs
and clock enable output) in a
separate entity or module. Timing
controller code is generated if
required by the design; a purely
combinatorial model does not
generate timing controller code.

Mentor
Graphics
ModelSim
compilation
script

system_compile.do, where
system is the name of the DUT.
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File Name

Synplify
synthesis
script

system_synplify.tcl, where
system is the name of the DUT.

VHDL
package
file

system_pkg.vhd, where system is
the name of the DUT. A package
file is generated only if the design
requires a VHDL package.

Mapping
file

system_map.txt, where system is
the name of the DUT. This report
file maps generated entities
(or modules) to the subsystems
that generated them. See “Code
Tracing Using the Mapping File”
on page 10-37.

Entities, Ports, and Signals

• Unique names are assigned to generated VHDL entities or
Verilog modules. Entity or module names are derived from
the names of the DUT. Name conflicts are resolved by the use
of a postfix string.

• HDL port names are assigned according to the following
conventions:

HDL Port Name

Input Same as corresponding
port name on the DUT (name
conflicts resolved according to
rules of the target language)

Output Same as corresponding
port name on the DUT (name
conflicts resolved according to
rules of the target language)
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HDL Port Name

Clock input clk

Clock enable input clk_enable

Clock enable output ce_out

Reset input reset

• HDL port directions and data types

— Port direction: IN or OUT, corresponding to the port on the
DUT.

— Clock, clock enable, and reset port data types: VHDL type
STD_LOGIC_VECTOR or Verilog type wire.

— Input and output port data types: VHDL type
STD_LOGIC_VECTOR or Verilog type wire. Port widths are
determined by the model.

• HDL signal names and data types:

— HDL signals generated from named signals in the model
retain their signal names.

— For unnamed signals in the model, HDL signal names are
derived from the concatenated names of the block and port
connected to the signal in the DUT: blockname_portname.
Conflicting names are made unique according to VHDL or
Verilog rules.

— Signal data types are determined by the data type of the
corresponding signal in the model. Each signal declaration
is annotated with a comment indicating the data type.

General HDL Code Settings

• VHDL-specific defaults:

— Generated VHDL files include both entity and architecture
code.
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— VHDL configurations are placed in any file that instantiates
a component.

— VHDL code checks for rising edges via the logic IF
clock'event AND clock='1' THEN... , when operating
on registers.

— When creating labels for VHDL GENERATE statements,
makehdl appends _gen to section and block names. makehdl
names output assignment block labels with the string
outputgen.

• A type-safe representation is used for concatenated zeros: '0'
& '0'...

• Generated code for registers uses asynchronous reset logic with
an active-high (1) reset level.

• The postfix string _process is appended to process names.

• On Microsoft® Windows® platforms, carriage return/linefeed
(CRLF) character sequences are never emitted in generated
code.

Code Optimizations

• In general, generated HDL code produces results that are
bit-true and cycle-accurate with respect to the original model
(that is, the HDL code exactly reproduces simulation results
from the model).

However, some block implementations generate code
that includes certain block-specific performance and area
optimizations. These optimizations can produce numeric
results or timing differences that differ from those produced
by the original model (see Chapter 9, “Generating Bit-True
Cycle-Accurate Models”).

Examples • The following call to makehdl generates Verilog code for the
subsystem symmetric_fir within the model sfir_fixed.
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makehdl('sfir_fixed/symmetric_fir','TargetLanguage', 'Verilog')

• The following call to makehdl generates VHDL code for the current
model. Code is generated into the target folder hdlsrc, with all code
generation options set to default values.

makehdl(bdroot)

• The following call to makehdl directs the HDL compatibility checker
(see checkhdl) to check the subsystem symmetric_fir within the
model sfir_fixed before code generation starts. If no compatibility
errors are encountered, makehdl generates VHDL code for the
subsystem symmetric_fir. Code is generated into the target folder
hdlsrc, with all code generation options set to default values.

makehdl('sfir_fixed/symmetric_fir','CheckHDL','on')

How To • makehdltb

• checkhdl
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Purpose Generate HDL test bench from model

Syntax makehdltb('modelname/subsys')

makehdltb('modelname/subsys', 'PropertyName', PropertyValue,

...)

Description makehdltb('modelname/subsys') generates an HDL test bench from
the specified subsystem within a model, using default values for all
properties. The modelname/subsys argument gives the path to the
subsystem under test. This subsystem must be at the top (root) level of
the current model. The generated test bench is designed to interface
to and validate HDL code generated from subsys (or from a subsystem
with a functionally identical public interface).

A typical practice is to generate HDL code for a subsystem, followed
immediately by generation of a test bench to validate the same
subsystem (see “Examples” on page 20-42).

Note If makehdl has not previously executed successfully within the
current session, makehdltb generates model code before generating
the test bench code.

Test bench code and model code must both be generated in the same
target language. If the target language specified for makehdltb differs
from the target language specified for the previous makehdl execution,
makehdltb will regenerate model code in the same language specified
for the test bench.

Properties passed in to makehdl persist after makehdl executes, and
(unless explicitly overridden) will be passed in to subsequent makehdltb
calls during the same session.

makehdltb('modelname/subsys', 'PropertyName',
PropertyValue,...) generates an HDL test bench from the specified
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subsystem within a model, explicitly specifying one or more code
generation options as property/value pairs.

Property/value pairs are passed in the form

'PropertyName', PropertyValue

These property settings determine characteristics of the test bench
code. Many of these properties are identical to those for makehdl, while
others are specific to test bench generation (for example, options for
generation of test bench stimuli). The next section, “Defaults for Test
Bench Code Generation” on page 20-40, summarizes the defaults that
are specific to generated test bench code.

For detailed descriptions of each property and its effect on generated
code, see Chapter 18, “Properties — Alphabetical List”, and Chapter
19, “Property Reference”.

Generating Stimulus and Output Data

makehdltb generates test data from signals connected to inputs of the
subsystem under test. Sample values for each stimulus signal are
computed and stored for each time step of the simulation. The signal
data is represented as arrays in the generated test bench code.

To help you validate generated HDL code, makehdltb also generates
output data from signals connected to outputs of the subsystem
under test. Like input data, sample values for each output signal are
computed and stored for each time step of the simulation. The signal
data is represented as arrays in the generated test bench code.

The total simulation time (set by the model’s Stop Time parameter)
determines the size of the stimulus and output data arrays.
Computation of sample values can be time-consuming. Consider
speeding up generation of signal data by entering a shorter Stop Time.

Defaults for Test Bench Code Generation

This section describes defaults that apply specifically to generation
of test bench code. makehdltb has many properties and defaults in
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common with makehdl. See “HDL Code Generation Defaults” on page
20-33 for a summary of these common properties and defaults.

File Packaging and Naming
By default, makehdltb generates an HDL source file containing
test bench code and arrays of stimulus and output data. In
addition, makehdltb generates script files that let you execute
a simulation of the test bench and the HDL entity under test.
Generated test bench file names (like makehdl generated file
names) are based on the name of the DUT. The following table
summarizes the default test bench file-naming conventions.

File Name

Verilog test
bench

system_tb.v, where system is the
name of the system under test

VHDL test
bench

system_tb.vhd, where system is
the name of the system under test

Mentor
Graphics
ModelSim
compilation
script

system_tb_compile.do, where
system is the name of the DUT

Mentor
Graphics
ModelSim
simulation
script

system_tb_sim.do, where system
is the name of the DUT

Other Test Bench Settings

• The test bench forces clock, clock enable, and reset input
signals.

• The test bench forces clock enable and reset input to active
high (1).
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• The clock input signal is driven high (1) for 5 nanoseconds
and low (0) for 5 nanoseconds.

• The test bench forces reset signals.

• The test bench applies a hold time of 2 nanoseconds to reset
and data input signals.

Examples In the following example, makehdl generates VHDL code for the
subsystem symmetric_fir. After the coder indicates successful
completion of code generation, makehdltb generates a VHDL test bench
for the same subsystem.

makehdl('sfir_fixed/symmetric_fir')

### Applying HDL Code Generation Control Statements

### Begin VHDL Code Generation

### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

### HDL Code Generation Complete.

makehdltb('sfir_fixed/symmetric_fir')

### Begin TestBench Generation

### Generating Test bench: hdlsrc\symmetric_fir_tb.vhd

### Please wait ...

### HDL TestBench Generation Complete.

How To • makehdl

20-42



21

Function Reference



21 Function Reference

Code Generation Functions
makehdl Generate HDL RTL code from model

or subsystem

makehdltb Generate HDL test bench from
model
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HDL Block and Model Parameter Utilities

HDL Block and Model Parameter Utilities
hdldispblkparams Display HDL block parameters that

have nondefault values

hdldispmdlparams Display HDL model parameters that
have nondefault values

hdlget_param Return value of specified HDL
block-level parameter (or of all
parameters) for specified block

hdlset_param Set HDL-related parameters at
model or block level
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Utility Functions
checkhdl Check subsystem or model for HDL

code generation compatibility

hdladvisor Display HDL Workflow Advisor

hdllib Create library of blocks that support
HDL code generation

hdlsetup Set general model parameters for
HDL code generation
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Control File Utilities
hdlapplycontrolfile Apply control file settings to model

hdlnewblackbox Generate customizable control file
from selected subsystem or blocks

hdlnewcontrol Construct code generation control
object for use in control file

hdlnewcontrolfile Generate customizable control file
from selected subsystem or blocks

hdlnewforeach Generate forEach calls for insertion
into code generation control files
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A Examples

Generating HDL Code Using the Command Line Interface
“Creating a Folder and Local Model File” on page 2-7
“Initializing Model Parameters with hdlsetup” on page 2-8
“Generating a VHDL Entity from a Subsystem” on page 2-10
“Generating VHDL Test Bench Code” on page 2-12
“Verifying Generated Code” on page 2-13

Generating HDL Code Using the GUI
“Creating a Folder and Local Model File” on page 2-19
“Viewing Coder Options in the Configuration Parameters Dialog Box” on
page 2-20
“Initializing Model Parameters with hdlsetup” on page 2-22
“Selecting and Checking a Subsystem for HDL Compatibility” on page 2-23
“Generating VHDL Code” on page 2-24
“Generating VHDL Test Bench Code” on page 2-27
“Verifying Generated Code” on page 2-29

Verifying Generated HDL Code in an HDL Simulator
“Simulating and Verifying Generated HDL Code” on page 2-30
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IndexA
addition operations

typecasting 18-4
advanced coding properties 19-6
application-specific integrated circuits

(ASICs) 1-2
architectures

setting postfix from command line 18-86
asserted level, reset

setting 18-75
asynchronous resets

setting from command line 18-78

B
BalanceDelays property 18-2
Bit Concat block 7-49
Bit Reduce block 7-49
Bit Rotate block 7-49
Bit Shift block 7-49
Bit Slice block 7-49
bit-true cycle-accurate models

bit-true to generated HDL code 9-2
Bitwise Operator blocks 7-49
block implementations

1–D Lookup Table 5-32
Constant 5-32
defined 4-2 17-5
Divide 5-32
Gain 5-32
Math Function 5-32
Maximum 5-32
Minimum 5-32
MinMax 5-32
multiple 5-32
parameters for 5-60
Product of Elements 5-32
restrictions on use of 5-47
selecting 4-2
special purpose 5-32

specifying in control file 17-18
Subsystem 5-32
Sum of Elements 5-32
summary of 5-3

block labels
for GENERATE statements 18-3
for output assignment blocks 18-67
specifying postfix for 18-3

BlockGenerateLabel property 18-3
blocks

restrictions on use in test bench 5-58
supporting complex data type 5-103

blockscope 17-9

C
CastBeforeSum property 18-4
checkhdl function 20-2
CheckHDL property 18-5
clock

specifying high time for 18-8
specifying low time for 18-11

clock enable input port
specifying forced signals for 18-21

clock input port 18-10
specifying forced 18-20

clock process names
specifying postfix for 18-12

clock time
high 18-8
low 18-11

ClockEnableInputPort property 18-6
ClockEnableOutputPort property 18-7
ClockHighTime property 18-8
ClockInput property 18-9
ClockInputPort property 18-10
ClockLowTime property 18-11
ClockProcessPostfix property 18-12
code generation control files. See control files
code generation report 10-2
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code, generated
advanced properties for customizing 19-6

CodeGenerationOutput property 18-13
comments, header

as property value 18-99
complex data type

blocks supporting 5-103
ComplexImagPostfix property 18-14
ComplexRealPostfix property 18-15
configuration parameters

EDA Tool Scripts pane 3-96
Compile command for Verilog 3-102
Compile command for VHDL 3-101
Compile file postfix 3-99
Compile Initialization 3-100
Compile termination 3-103
Generate EDA scripts 3-97
Simulation command 3-106
Simulation file postfix 3-104
Simulation initialization 3-105
Simulation termination 3-108
Simulation waveform viewing

command 3-107
Synthesis command 3-113
Synthesis file postfix 3-111
Synthesis initialization 3-112
Synthesis termination 3-114

Global Settings pane 3-24
Balance Delays 3-51
Cast before sum 3-56
Clock enable input port 3-28
Clock enable output port 3-50
Clock input port 3-27
Clock inputs 3-30
Clocked process postfix 3-42
Comment in header 3-32
Complex imaginary part postfix 3-46
Complex real part postfix 3-45
Concatenate type safe zeros 3-59
Emit time/date stamp in header 3-60

Enable prefix 3-43
Entity conflict postfix 3-35
Inline VHDL configuration 3-58
Input data type 3-47
Loop unrolling 3-55
Minimize clock enables 3-64
Minimize intermediate signals 3-66
Optimize timing controller 3-62
Output data type 3-48
Oversampling factor 3-31
Package postfix 3-36
Pipeline postfix 3-44
Represent constant values by

aggregates 3-53
Reserved word postfix 3-37
Reset asserted level 3-26
Reset input port 3-29
Reset type 3-25
Scalarize Vector Ports 3-52
Split arch file postfix 3-41
Split entity and architecture 3-38
Split entity file postfix 3-40
Use "rising_edge" for registers 3-54
Use Verilog `timescale directives 3-57
Verilog file extension 3-33
VHDL file extension 3-34

HDL Code Generation pane 3-11
Folder 3-15
Generate HDL for: 3-13
Generate resource optimization

report 3-19
Generate resource utilization report 3-20
Generate traceability report 3-17
Include requirements in block

comments 3-18
Language 3-14

pane
Choose synthesis tool 3-109
Generate cosimulation model 3-73
HDL test bench 3-70
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Test Bench pane 3-69
Clock enable delay 3-81
Clock high time (ns) 3-76
Clock low time (ns) 3-77
cosimulation blocks 3-71
Force clock 3-75
Force clock enable 3-80
Force reset 3-83
Hold input data between samples 3-86
Hold time (ns) 3-78
Ignore output data checking (number of

samples) 3-92
Initialize test bench inputs 3-87
Multi-file test bench 3-88
Reset length 3-84
Setup time (ns) 3-79
Test bench data file name postfix 3-91
Test bench name postfix 3-74

Configuration Parameters dialog box
HDL Code Generationr options in 3-2

configurations, inline
suppressing from command line 18-54

constants
setting representation from command

line 18-98
control files

control object method calls in 17-9
forAll 17-14
forEach 17-9
generateHDLFor 17-15
hdlnewcontrol 17-9 20-20 20-23
hdlnewcontrolfile 17-16
set 17-14

objects instantiated in 17-9
portability of 17-17
purpose of 17-4
required elements for 17-7
selecting block implementations in 17-5
specifying implementation mappings in 17-6
statement types in

property setting 17-4
selection/action 17-4

Cosimulation model 11-20

D
data input port

specifying hold time for 18-48
DateComment property 18-16
demos 1-8
Dual Port RAM block 7-4

E
EDAScriptGeneration property 18-17
electronic design automation (EDA) tools

generation of scripts for
customized 14-4
defaults for 14-3
overview of 14-2

Enabled subsystems
code generation for 11-14

EnablePrefix property 18-18
entities

setting postfix from command line 18-88
entity name conflicts 18-19
EntityConflictPostfix property 18-19

F
field programmable gate arrays (FPGAs) 1-2
file extensions

Verilog 18-105
VHDL 18-107

file location properties 19-2
file names

for architectures 18-86
for entities 18-88

file naming properties 19-2
files, generated

splitting 18-87
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folder, target 18-90
force reset hold time 18-48
ForceClock property 18-20
ForceClockEnable property 18-21
ForceReset property 18-22
FPGAs (field programmable gate arrays) 1-2
functions

checkhdl 20-2
hdllib 20-14
hdlnewblackbox 20-16
hdlnewcontrolfile 20-21
hdlnewforeach 20-23
hdlsetup 20-30
makehdl 20-32
makehdltb 20-39

G
GenerateCoSimBlock property 18-23
GenerateCoSimModel property 18-24
generated models

bit-true to generated HDL code 9-2
cycle-accuracy of 9-2
default options for 9-10
example of numeric differences 9-4
GUI options for 9-11
highlighted blocks in 9-10
latency example 9-7
makehdl properties for 9-13
naming conventions for 9-10
options for 9-10

Generatedmodelname property 18-25
Generatedmodelnameprefix property 18-26
GenerateValidationModel property 18-27
Generating cosimulation models 11-20

H
HandleAtomicSubsystem property 18-28
hardware description languages (HDLs) 1-2

See also Verilog; VHDL
HDL Code Generation menu 3-6
HDL Code Generation options

in Configuration Parameters dialog box 3-2
in Model Explorer 3-4
in Tools menu 3-6

HDLCompileFilePostfix property 18-31
HDLCompileInit property 18-29
HDLCompileTerm property 18-30
HDLCompileVerilogCmd property 18-32
HDLCompileVHDLCmd property 18-33
HDLControlFiles property 18-34
hdllib function 20-14
HDLMapPostfix property 18-35
hdlnewblackbox function 20-16
hdlnewcontrolfile function 20-21
hdlnewforeach function 20-23

example 17-19
generating forEach calls with 17-19

HDLs (hardware description languages) 1-2
See also Verilog; VHDL

hdlsetup function 20-30
HDLSimCmd property 18-36
HDLSimFilePostfix property 18-38
HDLSimInit property 18-37
HDLSimTerm property 18-39
HDLSimViewWaveCmd property 18-40
HDLSynthCmd property 18-41
HDLSynthFilePostfix property 18-42
HDLSynthInit property 18-43
HDLSynthTerm property 18-44
header comment properties 19-3
Highlightancestors property 18-45
Highlightcolor property 18-46
hold time 18-48
HoldInputDataBetweenSamples time 18-47
HoldTime property 18-48
HTML code generation report 10-2
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I
IgnoreDataChecking property 18-50 18-52
implementation mapping

defined 17-6
InitializeTestBenchInputs property 18-53
inline configurations

specifying 18-54
InlineConfigurations property 18-54
input ports

specifying data type for 18-55
InputType property 18-55
instance sections 18-56
InstanceGenerateLabel property 18-56
InstancePostfix property 18-57
InstancePrefix property 18-58
Interfaces, generation of

for Dual Port RAM block 7-4
for HDL Cosimulation blocks 11-18
for referenced models 11-13
for simple Dual Port RAM block 7-4
for Single Port RAM block 7-4

L
labels

block 18-67
language

target 18-91
language selection properties 19-2 19-10
loops

unrolling 18-59
LoopUnrolling property 18-59

M
makehdl function 20-32
makehdltb function 20-39
MATLAB Function block

Distributed pipeline insertion 13-53

DistributedPipelining parameter
for 13-53

HDL code generation for 13-2
limitations 13-74
setting fixed point options 13-9
tutorial example 13-4

OutputPipeline parameter for 13-53
recommended settings for HDL code

generation 13-60
speed optimization for 13-53

MATLAB Function Block
design patterns in 13-20

MinimizeClockEnables property 18-60
MinimizeIntermediateSignals property 18-62
Model Explorer

HDL Code Generation options in 3-4
modelscope 17-9
MulticyclePathInfo property 18-63
MultifileTestBench property 18-64

N
name conflicts 18-19
names

clock process 18-12
package file 18-70

naming properties 19-3
No-op block implementations 11-47

O
online help 1-8
OptimizationReport property 18-65
OptimizeTimingController property 18-66
options

Cosimulation model 11-20
output ports

specifying data type for 18-68
OutputGenerateLabel property 18-67
OutputType property 18-68
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Oversampling property 18-69

P
package files

specifying postfix for 18-70
PackagePostfix property 18-70
Pass-through block implementations 11-47
PipelinePostfix property 18-71
port properties 19-5
ports

clock enable input 18-6
clock input 18-10
input 18-55
output 18-68
reset input 18-76

properties
advanced coding 19-6
BalanceDelays 18-2
BlockGenerateLabel 18-3
CastBeforeSum 18-4
CheckHDL 18-5
ClockEnableInputPort 18-6
ClockEnableOutputPort 18-7
ClockHighTime 18-8
ClockInput 18-9
ClockInputPort 18-10
ClockLowTime 18-11
ClockProcessPostfix 18-12
CodeGenerationOutput 18-13
coding 19-6
ComplexImagPostfix 18-14
ComplexRealPostfix 18-15
DateComment 18-16
EDAScriptGeneration 18-17
EnablePrefix 18-18
EntityConflictPostfix 18-19
file location 19-2
file naming 19-2
ForceClock 18-20

ForceClockEnable 18-21
ForceReset 18-22
GenerateCoSimBlock 18-23
GenerateCoSimModel 18-24
generated models 19-10
Generatedmodelname 18-25
Generatedmodelnameprefix 18-26
GenerateValidationModel 18-27
HandleAtomicSubsystem 18-28
HDLCompileFilePostfix 18-31
HDLCompileInit 18-29
HDLCompileTerm 18-30
HDLCompileVerilogCmd 18-32
HDLCompileVHDLCmd 18-33
HDLControlFiles 18-34
HDLMapPostfix 18-35
HDLSimCmd 18-36
HDLSimFilePostfix 18-38
HDLSimInit 18-37
HDLSimTerm 18-39
HDLSimViewWaveCmd 18-40
HDLSynthCmd 18-41
HDLSynthFilePostfix 18-42
HDLSynthInit 18-43
HDLSynthTerm 18-44
header comment 19-3
Highlightancestors 18-45
Highlightcolor 18-46
HoldInputDataBetweenSamples 18-47
HoldTime 18-48
IgnoreDataChecking 18-50 18-52
InitializeTestBenchInputs 18-53
InlineConfigurations 18-54
InputType 18-55
InstanceGenerateLabel 18-56
InstancePostfix 18-57
InstancePrefix 18-58
language selection 19-2
LoopUnrolling 18-59
MinimizeClockEnables 18-60

Index-6



Index

MinimizeIntermediateSignals 18-62
MulticyclePathInfo 18-63
MultifileTestBench 18-64
naming 19-3
OptimizationReport 18-65
OptimizeTimingController 18-66
OutputGenerateLabel 18-67
OutputType 18-68
Oversampling 18-69
PackagePostfix 18-70
PipelinePostfix 18-71
port 19-5
RequirementComments 18-73
ReservedWordPostfix 18-74
reset 19-2
ResetAssertedLevel 18-75
ResetInputPort 18-76
ResetLength 18-77
ResetType 18-78
ResetValue 18-80
ResourceReport 18-81
SafeZeroConcat 18-82
ScalarizePorts 18-83
script generation 19-4
SimulatorFlags 18-85
SplitArchFilePostfix 18-86
SplitEntityArch 18-87
SplitEntityFilePostfix 18-88
SynthToolOption 18-89
TargetDirectory 18-90
TargetLanguage 18-91
test bench 19-8
TestBenchClockEnableDelay 18-92
TestBenchDataPostFix 18-93
TestBenchPostfix 18-94
TestBenchReferencePostFix 18-96
TimingControllerPostfix 18-95
Traceability 18-97
UseAggregatesForConst 18-98
UserComment 18-99

UseRisingEdge 18-100
UseVerilogTimescale 18-102
VectorPrefix 18-103
Verbosity 18-104
VerilogFileExtension 18-105
VHDLArchitectureName 18-106
VHDLFileExtension 18-107
VHDLLibraryName 18-108

R
RAM

blocks 7-4
inferring 7-4

RequirementComments property 18-73
requirements

product 1-6
reserved words

specifying postfix for 18-74
ReservedWordPostfix property 18-74
reset input port 18-76
reset properties 19-2
ResetAssertedLevel property 18-75
ResetInputPort property 18-76
ResetLength property 18-77
resets

setting asserted level for 18-75
specifying forced 18-22
types of 18-78

ResetType property 18-78
ResetValue property 18-80
ResourceReport property 18-81

S
SafeZeroConcat property 18-82
ScalarizePorts property 18-83
script generation properties 19-4
sections

instance 18-56

Index-7



Index

Simple Dual Port RAM block 7-4
SimulatorFlags property 18-85
Single Port RAM block 7-4
SplitArchFilePostfix property 18-86
SplitEntityArch property 18-87
SplitEntityFilePostfix property 18-88
Stateflow charts

code generation 12-2
requirements for 12-4
restrictions on 12-4

subtraction operations
typecasting 18-4

synchronous resets
setting from command line 18-78

SynthToolOption property 18-89

T
TargetDirectory property 18-90
TargetLanguage property 18-91
test bench properties 19-8
test benches

specifying clock enable input for 18-21
specifying forced clock input for 18-20
specifying forced resets for 18-22

TestBenchClockEnableDelay property 18-92
TestBenchDataPostFix property 18-93
TestBenchPostfix property 18-94
TestBenchReferencePostFix property 18-96
time

clock high 18-8
clock low 18-11

hold 18-48
timescale directives

specifying use of 18-102
TimingControllerPostfix property 18-95
Traceability property 18-97
Triggered subsystems

code generation for 11-14
typecasting 18-4

U
UseAggregatesForConst property 18-98
UserComment property 18-99
UseRisingEdge property 18-100
UseVerilogTimescale property 18-102

V
VectorPrefix property 18-103
Verbosity property 18-104
Verilog 1-2

file extension 18-105
VerilogFileExtension property 18-105
VHDL 1-2

file extension 18-107
VHDLArchitectureName property 18-106
VHDLFileExtension property 18-107
VHDLLibraryName property 18-108

Z
zeros, concatenated 18-82

Index-8


	toc
	Getting Started
	Product Overview
	Automated HDL Code Generation in the Hardware Development Proces
	Extending the Code Generation Process

	Summary of Key Features

	Expected Users and Prerequisites
	Software Requirements and Installation
	Software Requirements
	Software Requirements for Demos
	VHDL and Verilog Language Support

	Installing the Software

	Available Help and Demos
	Online Help
	Demos


	Introduction to HDL Code Generation
	Before You Generate Code
	Overview of Exercises
	The sfir_fixed Demo Model
	Generating HDL Code Using the Command Line Interface
	Overview
	Creating a Folder and Local Model File
	Initializing Model Parameters with hdlsetup
	Generating a VHDL Entity from a Subsystem
	Generating VHDL Test Bench Code
	Verifying Generated Code
	Generating a Verilog Module and Test Bench
	Generating a Verilog Module
	Generating and Executing a Verilog Test Bench


	Generating HDL Code Using the GUI
	Simulink HDL Coder GUI Overview
	Creating a Folder and Local Model File
	Creating a Folder
	Making a Local Copy of the Model File

	Viewing Coder Options in the Configuration Parameters Dialog Box
	Initializing Model Parameters with hdlsetup
	Selecting and Checking a Subsystem for HDL Compatibility
	Generating VHDL Code
	Generating VHDL Test Bench Code
	Verifying Generated Code
	Generating Verilog Model and Test Bench Code

	Simulating and Verifying Generated HDL Code

	Code Generation Options in the Simulink HDL Coder Dialog Boxes
	Viewing and Setting HDL Code Generation Options
	HDL Code Generation Options in the Configuration Parameters Dial
	HDL Code Generation Options in the Model Explorer
	HDL Code Generation Tools Menu
	HDL Code Generation Options in the Block Context Menu
	The HDL Block Properties Dialog Box

	HDL Code Generation Pane: General
	HDL Code Generation Top-Level Pane Overview
	Buttons in the HDL Code Generation Top-Level Pane

	Generate HDL for
	Settings
	Command-Line Information
	See Also

	Language
	Settings
	Command-Line Information
	See Also

	Folder
	Settings
	Command-Line Information
	See Also

	Code Generation Output
	Settings
	Command-Line Information
	See Also

	Generate traceability report
	Settings
	Command-Line Information
	See Also

	Include requirements in block comments
	Settings
	Command-Line Information
	See Also

	Generate optimization report
	Settings
	Command-Line Information
	See Also

	Generate resource utilization report
	Settings
	Command-Line Information
	See Also


	HDL Code Generation Pane: Global Settings
	Global Settings Overview
	Reset type
	Settings
	Command-Line Information
	See Also

	Reset asserted level
	Settings
	Command-Line Information
	See Also

	Clock input port
	Settings
	Command-Line Information
	See Also

	Clock enable input port
	Settings
	Tip
	Command-Line Information
	See Also

	Reset input port
	Settings
	Tip
	Command-Line Information
	See Also

	Clock inputs
	Settings
	Command-Line Information
	See Also

	Oversampling factor
	Settings
	Command-Line Information
	See Also

	Comment in header
	Settings
	Command-Line Information
	See Also

	Verilog file extension
	Settings
	Dependencies
	Command-Line Information
	See Also

	VHDL file extension
	Settings
	Dependencies
	Command-Line Information
	See Also

	Entity conflict postfix
	Settings
	Command-Line Information
	See Also

	Package postfix
	Settings
	Dependency
	Command-Line Information
	See Also

	Reserved word postfix
	Settings
	Command-Line Information
	See Also

	Split entity and architecture
	Settings
	Tips
	Dependencies
	Command-Line Information
	See Also

	Split entity file postfix
	Settings
	Dependencies
	Command-Line Information
	See Also

	Split arch file postfix
	Settings
	Dependencies
	Command-Line Information
	See Also

	Clocked process postfix
	Settings
	Command-Line Information
	See Also

	Enable prefix
	Settings
	Command-Line Information
	See Also

	Pipeline postfix
	Settings
	Command-Line Information
	See Also

	Complex real part postfix
	Settings
	Command-Line Information
	See Also

	Complex imaginary part postfix
	Settings
	Command-Line Information
	See Also

	Input data type
	Settings
	Dependencies
	Command-Line Information
	See Also

	Output data type
	Settings
	Dependencies
	Command-Line Information
	See Also

	Clock enable output port
	Settings
	Command-Line Information
	See Also

	Balance Delays
	Settings
	Command-Line Information
	See Also

	Scalarize Vector Ports
	Settings
	Dependencies
	Command-Line Information
	See Also

	Represent constant values by aggregates
	Settings
	Dependencies
	Command-Line Information
	See Also

	Use "rising_edge" for registers
	Settings
	Dependencies
	Command-Line Information
	See Also

	Loop unrolling
	Settings
	Tips
	Dependencies
	Command-Line Information
	See Also

	Cast before sum
	Settings
	Command-Line Information
	See Also

	Use Verilog `timescale directives
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Inline VHDL configuration
	Settings
	Tip
	Dependencies
	Command-Line Information
	See Also

	Concatenate type safe zeros
	Settings
	Dependencies
	Command-Line Information
	See Also

	Emit time/date stamp in header
	Settings
	Command-Line Information
	See Also

	Optimize timing controller
	Settings
	Tip
	Command-Line Information
	See Also

	Minimize clock enables
	Settings
	Exceptions
	Command-Line Information
	See Also

	Minimize intermediate signals
	Settings
	Command-Line Information
	See Also


	HDL Code Generation Pane: Test Bench
	Test Bench Overview
	Generate Test Bench Button

	HDL test bench
	Settings
	Dependencies
	Command-Line Information
	See Also

	Cosimulation blocks
	Settings
	Dependencies
	Command-Line Information
	See Also

	Cosimulation model for use with:
	Settings
	Command-Line Information
	See Also

	Test bench name postfix
	Settings
	Command-Line Information
	See Also

	Force clock
	Settings
	Dependencies
	Command-Line Information
	See Also

	Clock high time (ns)
	Settings
	Dependencies
	Command-Line Information
	See Also

	Clock low time (ns)
	Settings
	Dependencies
	Command-Line Information
	See Also

	Hold time (ns)
	Settings
	Tips
	Command-Line Information
	See Also

	Setup time (ns)
	Settings
	Dependency
	Command-Line Information
	See Also

	Force clock enable
	Settings
	Dependencies
	Command-Line Information
	See Also

	Clock enable delay (in clock cycles)
	Settings
	Dependency
	Command-Line Information
	See Also

	Force reset
	Settings
	Tips
	Command-Line Information
	See Also

	Reset length (in clock cycles)
	Settings
	Dependency
	Command-Line Information
	See Also

	Hold input data between samples
	Settings
	Tip
	Command-Line Information
	See Also

	Initialize test bench inputs
	Settings
	Command-Line Information
	See Also

	Multi-file test bench
	Settings
	Dependency
	Command-Line Information
	See Also

	Test bench reference postfix
	Settings
	Command-Line Information
	See Also

	Test bench data file name postfix
	Settings
	Dependency
	Command-Line Information
	See Also

	Ignore output data checking (number of samples)
	Settings
	Command-Line Information
	See Also


	HDL Code Generation Pane: EDA Tool Scripts
	EDA Tool Scripts Overview
	Generate EDA scripts
	Settings
	Command-Line Information
	See Also

	Generate multicycle path information
	Settings
	Command-Line Information
	See Also

	Compile file postfix
	Settings
	Command-Line Information
	See Also

	Compile Initialization
	Settings
	Command-Line Information
	See Also

	Compile command for VHDL
	Settings
	Command-Line Information
	See Also

	Compile command for Verilog
	Settings
	Command-Line Information
	See Also

	Compile termination
	Settings
	Command-Line Information
	See Also

	Simulation file postfix
	Settings
	Command-Line Information
	See Also

	Simulation initialization
	Settings
	Command-Line Information
	See Also

	Simulation command
	Settings
	Command-Line Information
	See Also

	Simulation waveform viewing command
	Settings
	Command-Line Information
	See Also

	Simulation termination
	Settings
	Command-Line Information
	See Also

	Choose synthesis tool
	Settings
	Command-Line Information
	See Also

	Synthesis file postfix
	Settings
	Command-Line Information
	See Also

	Synthesis initialization
	Settings
	Command-Line Information
	See Also

	Synthesis command
	Settings
	Command-Line Information
	See Also

	Synthesis termination
	Settings
	Command-Line Information
	See Also



	Specifying Block Implementations and Parameters for HDL Code Gen
	Overview of Block Implementations and Implementation Parameters
	A Note on Control Files

	Viewing Block Implementation and Implementation Parameter Settin
	Selecting Block Implementations and Setting Implementation Param
	Selecting Block Implementations with hdlset_param
	Selecting Implementations and Setting Implementation Parameters 
	Obtaining HDL-Related Block and Model Parameter Information
	Obtaining Block-level HDL Settings
	 hdlget_params
	hdldispblkparams

	Obtaining Model-level HDL Settings


	Guide to Supported Blocks and Block Implementations
	Generating a Supported Blocks Quick Reference Report
	Summary of Block Implementations
	Blocks with Multiple Implementations
	Overview
	Implementations for Commonly Used Blocks
	Math Function Block Implementations
	Divide Block Implementations
	Subsystem Interfaces and Special-Purpose Implementations
	A Note on Cascade Implementations

	Block-Specific Usage, Requirements, and Restrictions for HDL Cod
	Block Usage, Requirements, and Restrictions
	Biquad Filter Block Requirements and Restrictions
	Convolutional Encoder Block Requirements and Restrictions
	Convolutional Interleaver and Deinterleaver Block Requirements a
	Data Type Conversion Block Requirements and Restrictions
	Digital Filter Block Requirements and Restrictions
	Discrete-Time Integrator Requirements and Restrictions
	Discrete FIR Filter Requirements and Restrictions
	FIR Decimation Requirements and Restrictions
	FIR Interpolation Requirements and Restrictions
	General Multiplexed Interleaver and Deinterleaver Block Requirem
	LMS Filter Usage and Restrictions
	Magnitude-Angle to Complex Block Requirements and Restrictions
	Multirate CIC Decimation and Multirate FIR Decimation Blocks Req
	Multirate CIC Interpolation and Multirate FIR Interpolation Bloc
	NCO Block Requirements and Restrictions
	PN Sequence Generator Block Requirements and Restrictions
	Reciprocal Sqrt Block Requirements and Restrictions
	Rectangular QAM Demodulator Baseband Block Requirements and Rest
	Rectangular QAM Modulator Baseband Block Requirements and Restri
	Sine Wave Block Requirements and Restrictions
	Trigonometric Function Block Requirements and Restrictions
	Viterbi Decoder Block Requirements and Restrictions

	Restrictions on Use of Blocks in the Test Bench

	Block Implementation Parameters
	Overview
	ConstMultiplierOptimization
	CoeffMultipliers
	Distributed Arithmetic Implementation Parameters for Digital Fil
	Improving Performance with Parallelism
	Reducing LUT Size
	Requirements and Considerations for Generating Distributed Arith
	DALUTPartition Implementation Parameter
	DARadix Implementation Parameter
	Special Cases

	DistributedPipelining
	Overview
	Example: Distributed Pipeline Insertion in a Subsystem
	Limitations
	See Also

	InputPipeline
	OutputPipeline
	Pipelining Implementation Parameters for Filter Blocks
	AddPipelineRegisters Details
	Limitations 

	RAM
	ResetType
	ShiftRegister
	UseRAM
	Mapping of a Single Integer Delay to a RAM
	Mapping of Multiple Integer Delays to a RAM

	Speed vs. Area Optimizations for FIR Filter Implementations
	Overview of Speed vs. Area Optimizations
	Parallel and Serial Architectures
	Implementation Parameters for Specifying Speed vs. Area Tradeoff

	Interface Generation Parameters

	Blocks That Support Complex Data
	Complex Coefficients and Data Support for the Digital Filter and

	Support for Lookup Table Blocks in HDL Code Generation
	n-D Lookup Table
	Required Block Settings
	Avoid Generation of Divide Operator
	Table Data Typing and Sizing

	Prelookup
	Required Block Settings
	Table Data Typing and Sizing

	Direct Lookup Table (n-D)
	Required Block Settings
	Table Data Typing and Sizing

	1-D Lookup Table
	2-D Lookup Table


	Generating HDL Code for Multirate Models
	Overview of Multirate Models
	Configuring Multirate Models for HDL Code Generation
	Overview
	Configuring Model Parameters
	Configuring Sample Rates in the Model
	Constraints for Rate Transition Blocks and Other Blocks in Multi
	Rate Transition Blocks
	Upsample
	Downsample
	Delay and Zero-Order Hold Blocks


	Example: Model with a Multirate DUT
	Generating a Global Oversampling Clock
	Why Use a Global Oversampling Clock?
	Requirements for the Oversampling Factor
	Specifying the Oversampling Factor From the GUI
	Specifying the Oversampling Factor From the Command Line
	Resolving Oversampling Rate Conflicts

	Generating Multicycle Path Information Files
	Overview
	Format and Content of a Multicycle Path Information File
	Register Path Syntax for FROM : and TO : Fields
	Ordering of Multicycle Path Constraints
	Clock Definitions

	File Naming and Location Conventions 
	Generating Multicycle Path Information Files Using the GUI
	Generating Multicycle Path Information Files Using the Command L
	Limitations 
	Unsupported Blocks and Implementations 
	Limitations on MATLAB Function Blocks and Stateflow Charts
	File Generation Time

	Example of Generating a Multicycle Path Information File

	Properties Supporting Multirate Code Generation
	Overview
	HoldInputDataBetweenSamples
	OptimizeTimingController


	The hdldemolib Block Library
	Accessing the hdldemolib Library Blocks
	RAM Blocks
	Overview of RAM Blocks
	RAM Block Demo

	Dual Port RAM Block
	Dual Port RAM Block Ports and Parameters
	Read-During-Write Behavior

	Simple Dual Port RAM Block
	Simple Dual Port RAM Block Ports and Parameters
	Read-During-Write Behavior

	Single Port RAM Block
	Single Port RAM Block Ports and Parameters
	Read-During-Write Behavior

	Code Generation with RAM Blocks
	RAM Block Implementations

	Limitations for RAM Blocks
	Generic RAM and ROM Demos
	Generic RAM Template Supports RAM Without a Clock Enable Signal
	Generating ROM with 1-D Lookup Table and Unit Delay Blocks


	HDL Counter
	Overview
	Counter Modes
	Free Running Mode (default)
	Count Limited Mode

	Control Ports
	Creating Control Ports for Loading and Resetting the Counter
	Enabling or Disabling the Counter
	Controlling the Counter Direction
	Priority of Control Signals

	Defining the Counter Data Type and Size
	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	HDL FFT
	Overview
	HDL FFT Block Demo

	Block Inputs and Outputs
	Configuring Control Signals

	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	HDL FIFO
	Overview
	Block Inputs and Outputs
	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	HDL Streaming FFT
	Overview
	HDL Streaming FFT Block Demo
	Block Inputs and Outputs
	Timing Description
	Continuous Data Streaming Timing 
	Non-Continuous Data Streaming Timing 
	Initial Delay

	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	Bitwise Operators
	Overview of Bitwise Operator Blocks
	Bit Concat
	Description
	Data Type Support
	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	Bit Reduce
	Description
	Data Type Support
	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	Bit Rotate
	Description
	Data Type Support
	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	Bit Shift
	Description
	Data Type Support
	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box

	Bit Slice
	Description
	Data Type Support
	HDL Implementation and Implementation Parameters
	Parameters and Dialog Box



	Streaming, Resource Sharing, and Delay Balancing
	Streaming
	Streaming Overview
	Streaming Example
	The Validation Model

	Requirements and Limitations for Streaming
	Blocks That Support Streaming
	Computing Streaming Factors and Resultant Sample Times
	Checks and Requirements for Streaming Subsystems


	Resource Sharing
	Overview
	Sharable Blocks
	The Validation Model

	Mutually Parallel vs. Data-Dependent Resource Sharing
	Mutually Parallel Sharing Example
	Data Dependent Sharing Example

	Resource Sharing with Atomic Subsystems
	Resource Sharing Information in Reports
	Limitations for Resource Sharing

	Delay Balancing
	Properties Supporting Delay Balancing
	Delay Balancing Example
	Unsupported Blocks and Block Implementations


	Generating Bit-True Cycle-Accurate Models
	Overview of Generated Models
	Example: Numeric Differences
	Example: Latency
	Defaults and Options for Generated Models
	Defaults for Model Generation
	Model Generation
	Naming of Generated Models
	Block Highlighting

	GUI Options
	Generated Model Properties for makehdl

	Limitations for Generated Models
	Fixed-Point Limitation
	Double-Precision Limitation
	Model Properties Not Supported for Generated Models


	Code Generation Reports, HDL Compatibility Checker, Block Suppor
	Creating and Using Code Generation Reports
	Information Included in Code Generation Reports
	Summary Section
	Traceability Report Section
	Generating a Traceability Report from Configuration Parameters
	Generating a Traceability Report from the Command Line
	Keeping the Report Current
	Tracing from Code to Model
	Tracing from Model to Code
	Mapping Model Elements to Code Using the Traceability Report
	Traceability Report Limitations
	Resource Utilization Report Section
	Optimization Report Section

	Annotating Generated Code with Comments and Requirements
	Simulink Annotations
	Text Comments
	Requirements Comments and Hyperlinks

	HDL Compatibility Checker
	Supported Blocks Library
	Code Tracing Using the Mapping File
	Adding and Removing the HDL Configuration Component
	What Is the HDL Configuration Component?
	Adding the HDL Coder Configuration Component To a Model
	Removing the HDL Coder Configuration Component From a Model


	Interfacing Subsystems and Models to HDL Code
	Overview of HDL Interfaces
	Generating a Black Box Interface for a Subsystem
	Generating Code for a Black Box Subsystem Implementation

	Generating Reusable Code for Atomic Subsystems
	Generating Interfaces for Referenced Models
	Code Generation for Enabled and Triggered Subsystems
	Code Generation for Enabled Subsystems
	Code Generation for Triggered Subsystems
	Best Practices for Using Enabled and Triggered Subsystems
	Note on Use of the Signal Builder Block


	Code Generation for HDL Cosimulation Blocks
	Generating a Simulink Model for Cosimulation with an HDL Simulat
	Overview
	Generating a Cosimulation Model from the GUI
	Structure of the Generated Model
	Simulation Path
	Cosimulation Path
	Start Simulator Control
	Signal Routing Between Simulation and Cosimulation Paths
	Controlling Assertions and Scope Displays

	Launching a Cosimulation
	The Cosimulation Script File
	Header Comments Section
	TCL Commands Section

	Complex and Vector Signals in the Generated Cosimulation Model
	Complex Signals
	Vector Signals

	Generating a Cosimulation Model from the Command Line
	Naming Conventions for Generated Cosimulation Models and Scripts
	Limitations for Cosimulation Model Generation

	Customizing the Generated Interface
	Pass-Through and No-Op Implementations
	Limitation on Generated Verilog Interfaces

	Stateflow HDL Code Generation Support
	Introduction to Stateflow HDL Code Generation
	Overview
	Demos and Related Documentation
	Demos
	Related Documentation


	Quick Guide to Requirements for Stateflow HDL Code Generation
	Overview
	Location of Charts in the Model
	Data Type Usage
	Supported Data Types

	Chart Initialization
	Registered Output
	Restrictions on Imported Code
	Using Input and Output Events
	Using For Loops
	Other Restrictions

	Mapping Chart Semantics to HDL
	Software Realization of Chart Semantics
	Hardware Realization of Stateflow Semantics
	Restrictions for HDL Realization
	Self-Contained Charts
	Charts Must Not Use Features Unsupported by HDL


	Using Mealy and Moore Machine Types in HDL Code Generation
	Overview
	Generating HDL for a Mealy Finite State Machine
	Generating HDL Code for a Moore Finite State Machine

	Structuring a Model for HDL Code Generation
	Design Patterns Using Advanced Chart Features
	Temporal Logic
	Graphical Function
	Hierarchy and Parallelism
	Stateless Charts
	Truth Tables


	Generating HDL Code with the MATLAB Function Block
	Introduction
	HDL Applications for the MATLAB Function Block
	Related Documentation and Demos
	Related Documentation
	Demos


	Tutorial Example: Incrementer
	Example Model Overview
	The Incrementer Function Code

	Setting Up
	Setting Up a folder

	Creating the Model and Configuring General Model Settings
	Adding a MATLAB Function Block to the Model
	Setting Optimal Fixed-Point Options for the MATLAB Function Bloc
	Programming the MATLAB Function Block
	Constructing and Connecting the DUT_eML_Block Subsystem
	Constructing the DUT_eML_Block Subsystem
	Setting Port Data Types for the MATLAB Function Block
	Connecting Subsystem Ports to the Model
	Checking the Function for Errors

	Compiling the Model and Displaying Port Data Types
	Simulating the eml_hdl_incrementer_tut Model
	Generating HDL Code
	Selecting the Subsystem for Code Generation
	Generating VHDL Code


	Useful MATLAB Function Block Design Patterns for HDL
	The eml_hdl_design_patterns Library
	Efficient Fixed-Point Algorithms
	Using Persistent Variables to Model State
	Creating Intellectual Property with the MATLAB Function Block
	Modeling Control Logic and Simple Finite State Machines
	Modeling Counters
	Modeling Hardware Elements

	Using Fixed-Point Bitwise Functions
	Overview
	Bitwise Functions Supported for HDL Code Generation
	Bit Slice and Bit Concatenation Functions
	Shift and Rotate Functions

	Using Complex Signals
	Introduction
	Declaring Complex Signals
	Conversion Between Complex and Real Signals
	Arithmetic Operations on Complex Numbers
	Support for Vectors of Complex Numbers
	Other Operations on Complex Numbers

	Distributed Pipeline Insertion for MATLAB Function Blocks
	Overview
	Example: Multiplier Chain

	Recommended Practices
	Introduction
	Use Compiled External Functions With MATLAB Function Blocks
	Build the MATLAB Function Block Code First
	Use the hdlfimath Utility for Optimized FIMATH Settings
	Use Optimal Fixed-Point Option Settings

	Language Support
	Fixed-Point Runtime Library Support
	Variables and Constants
	Data Type Usage
	Typing Ports, Variables and Constants
	Persistent Variables

	Use of Nontunable Parameter Arguments
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Control Flow Statements

	Other Limitations

	Generating Scripts for HDL Simulators and Synthesis Tools
	Overview of Script Generation for EDA Tools
	Defaults for Script Generation
	Custom Script Generation
	Overview
	Structure of Generated Script Files
	Properties for Controlling Script Generation
	Enabling and Disabling Script Generation
	Customizing Script Names
	Customizing Script Code
	Examples

	Controlling Script Generation with the EDA Tool Scripts GUI Pane
	Compilation Script Options
	Simulation Script Options
	Synthesis Script Options



	Using the HDL Workflow Advisor
	What Is the HDL Workflow Advisor?
	HDL Workflow Advisor Compatibility with Third-Party Tools
	Supported Third-Party Synthesis Tools
	Setting Up the Synthesis Tool Path

	Starting the HDL Workflow Advisor
	Using the HDL Workflow Advisor Window
	Selecting and Running HDL Workflow Advisor Tasks
	Task Execution Order
	What the Task Icons Represent
	Resetting and Rerunning Tasks

	Changing the Device Under Test
	Selecting and Running Tasks Individually
	Selecting and Running a Sequence of Tasks
	Run to Selected Task
	Run to Failure


	Saving and Restoring the HDL Workflow Advisor State
	How the Save and Restore Process Works
	Limitations of the Save and Restore Process
	Saving the HDL Workflow Advisor State
	Restoring the HDL Workflow Advisor State

	Correcting a Warning or Failure Problem
	Generating HDL Workflow Advisor Reports
	Viewing HDL Workflow Advisor Reports
	Saving HDL Workflow Advisor Reports

	Performing FPGA Synthesis and Analysis Tasks with Third-Party To
	FPGA Synthesis and Analysis Tasks Overview
	Creating a Synthesis Project
	Performing Logic Synthesis
	Performing Mapping
	Performing Place and Route

	Annotating Your Model with Critical Path Information
	Automated Workflows for Specific Target Devices and Synthesis To
	Workflow for Speedgoat FPGA IO Boards and xPC Target
	Selecting a Speedgoat Target Device
	Setting the Target Interface for Speedgoat Boards
	Code Generation, Synthesis, and Generation of xPC Target Interfa

	Workflow for Xilinx FPGA Development Boards
	Example Model
	Selecting the Target Device
	Setting the Target Interface
	Code Generation, Synthesis, and Programming of Target Device


	HDL Workflow Advisor Tasks
	HDL Workflow Advisor Tasks
	HDL Workflow Advisor Tasks Overview
	See Also

	Set Target Overview
	See Also

	Set Target Device and Synthesis Tool
	Description
	Dependencies
	See Also

	Set Target Interface
	Description
	Dependency
	See Also

	Prepare Model For HDL Code Generation Overview
	See Also

	Check Global Settings
	Description
	Tip
	See Also

	Check Algebraic Loops
	Description
	See Also

	Check Block Compatibility
	Description
	See Also

	Check Sample Times
	Description
	See Also

	HDL Code Generation Overview
	See Also

	Set Code Generation Options Overview
	See Also

	Set Basic Options
	Description
	See Also

	Set Advanced Options
	Description
	See Also

	Set Testbench Options
	Description
	See Also

	Generate RTL Code and Testbench
	Description
	See Also

	FPGA Synthesis and Analysis Overview
	Description
	See Also

	Create Project
	Description
	See Also

	Perform Synthesis and P/R Overview
	Description
	See Also

	Perform Logic Synthesis
	Description
	See Also

	Perform Mapping
	Description
	See Also

	Perform Place and Route
	Description
	Tips
	See Also

	Annotate Model with Synthesis Result
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Download to Target Overview
	See Also

	Generate Programming File
	See Also

	Program Target Device
	See Also

	Generate xPC Target Interface
	See Also

	Save and Restore HDL Workflow Advisor State
	See Also



	Code Generation Control Files
	READ THIS FIRST: Control File Compatibility and Conversion Issue
	Conversion From Use of Control Files Recommended
	Detaching Existing Models From Control Files
	Applying Control File Settings
	Backwards Compatibility

	Overview of Control Files
	What Is a Control File?
	Selectable Block Implementations and Implementation Parameters
	Implementation Mappings

	Structure of a Control File
	Code Generation Control Objects and Methods
	Overview
	hdlnewcontrol
	forEach
	Representation of the Root Model in modelscopes
	Resolution of modelscopes

	forAll
	set
	generateHDLFor
	hdlnewcontrolfile

	Using Control Files in the Code Generation Process
	Where to Locate Your Control Files
	Making Your Control Files More Portable

	Specifying Block Implementations and Parameters in the Control F
	Overview
	Generating Selection/Action Statements with the hdlnewforeach Fu
	hdlnewforeach Example


	Generating Black Box Control Statements Using hdlnewblackbox

	Properties — Alphabetical List
	Property Reference
	Language Selection Properties
	File Naming and Location Properties
	Reset Properties
	Header Comment and General Naming Properties
	Script Generation Properties
	Port Properties
	Advanced Coding Properties
	Test Bench Properties
	Generated Model Properties

	Functions — Alphabetical List
	Function Reference
	Code Generation Functions
	HDL Block and Model Parameter Utilities
	Utility Functions
	Control File Utilities

	Examples
	Generating HDL Code Using the Command Line Interface
	Generating HDL Code Using the GUI
	Verifying Generated HDL Code in an HDL Simulator

	Index

	tables
	Built-In/Constant
	Built-In/Gain
	Built-In/1-D Lookup Table
	DSP System Toolbox/Minimum
	DSP System Toolbox/Maximum
	Built-In/MinMax
	Built-In/Product
	Built-In/Sum
	simulink/Math Operations/Math Function (sqrt)
	simulink/Math Operations/Math Function (reciprocal)
	simulink/Math Operations/Math Function (conj)
	simulink/Math Operations/Math Function (hermitian)
	simulink/Math Operations/Math Function (transpose)
	simulink/Math Operations/Math Function (parent class)
	simulink/Math Operations/Divide (reciprocal computation only)
	Built-In/SubSystem
	Special-Purpose Implementations


